CN 11-5366/S     ISSN 1673-1530
“风景园林,不只是一本期刊。”

基于深度学习的公共空间人群行为可视化研究——以天津大学卫津路校区为例

A Visualized Research of Human’s Behavior in Public Spaces Based on Deep Learning: A Case Study of Weijin Road Campus, Tianjin University

  • 摘要: 公共空间是当代城市的重要组成部分,基于人群空间行为的研究可为其优化设计提供参考。当前,利用视频数据获取行人轨迹进而评估公共空间的研究方法开始出现,但使用的方法具有运算速度慢,无法实时获取结果等缺点。使用Python编写基于深度学习的计算机视觉算法,可实时获得研究场地上行人的轨迹数据。以天津大学卫津路校区内的3个公共空间为例,利用轨迹数据绘制人群分布热力图和人群行走速度热力图来分别表征公共空间各个出入口间的连接强度,以及行走速度不同的行人所选择路径的空间分布差异。最后,提出了该方法在辅助设计方面的可能性及其存在的局限性和改进的策略。

     

    Abstract: Public space is an important part of contemporary cities, and researches based on human spatial behavior can provide a reference for its optimal design. Currently, research methods which obtain pedestrian trajectories with video data to further evaluate public spaces are emerging. However, the current methods have the disadvantage of slow computing speed and the inability to obtain results in real time. A computer vision algorithm based on deep learning using Python can obtain the trajectory of pedestrians in the public space in real time. Citing the three public spaces in the Weijin Road campus of Tianjin University as examples, this research uses the trajectory data to draw a heat map of crowd distribution and a heat map of walking speed to respectively characterize the connection strength between the entrances and exits of the public spaces and the spatial distribution differences of the chosen paths of pedestrians with different speeds. Finally, it puts forward the possibility of this method in assisting design, its limitations and improvement strategies.

     

/

返回文章
返回