北京市郊铁路对乡村地区鸟类栖息地连通性的影响及优化
详细信息Influence of Beijing Suburban Railway on Bird Habitat Connectivity in Rural Areas and Optimization Thereof
More Information-
摘要:目的
乡村地区是城市发展的依托基底和腹地空间,是国土生态安全的重要基础,探究线性工程项目对乡村地区生物栖息地的影响对中国生态文明建设具有重要意义。
方法基于物种分布模型模拟北京乡村地区鸟类潜在适宜性生境,在分析栖息地连通性的基础上对市郊铁路的规划方案开展情景模拟并提出优化策略。
结果1)北京乡村地区鸟类生境斑块主要分布在水体及附近,整体连通性水平较低且不均匀,南部鸟类迁徙路径受市郊铁路阻隔较严重,发生廊道断裂后栖息地连通性降低;2)依据模拟结果,提出分级保护生态廊道和激活生态源地生态效益,增加生态节点以提高生态网络连通性整体水平,优化生态断裂点并设缓冲区和回避距离的优化策略。
结论北京市郊铁路降低了乡村地区鸟类栖息地连通性,由此提出综合性优化措施,以缓解相关负面生态效应,为生态文明建设和乡村振兴战略实施提供参考。
Abstract:ObjectiveRural areas serve as the base and hinterland space for urban development, the important foundation for homeland ecological security, and the key region for ecological civilization construction. However, in urban and rural construction, many linear projects pass through the city and split the countryside, bringing severe challenges to rural ecological security, and resulting in the rapid decline of biological habitat connectivity and the decline of biodiversity in rural areas. It is of great significance to pay attention to the influence of the construction of suburban railway in typical linear projects on bird habitat connectivity in rural areas.
MethodsFirstly, this research adopts the species distribution model to simulate the habitats potentially suitable for birds in rural areas of Beijing and the suitability index thereof, and accordingly obtains the suitable habitat patches. Secondly, the research adopts the Conefor 2.6 software to analyze habitat connectivity through such indicators as probability of connectivity (PC), integral index of connectivity (IIC) and number of links (NL). Then, the research conducts a scenario simulation in combination with the planning scheme for Beijing Suburban Railway, based on which the following four scenarios are set up: ideal scenario (S0), preliminary construction (S1), partial completion (S2), and full completion (S3). Finally, the research analyzes the influence of linear projects on bird habitat connectivity with the help of the SDMtoolbox, quantifies the connectivity of ecological sources and ecological corridors as well as the complexity and ecological efficiency of the ecological network by virtue of relevant ecological network structure indices, and accordingly puts forward suggestions for optimization.
ResultsResearch results are as follows. 1) The distribution of suitable habitats for birds in the research area obviously presents the following characteristic: The habitat distribution suitability index is the highest for such habitats as reservoirs, watercourses and their adjacent wetlands, marshes and cultivated lands. The total area of suitable habitats in rural areas is 1, 052.2 km2. Habitat patches are small and unevenly distributed, mainly distributed near Guanting Reservoir in northwest Beijing and Miyun Reservoir in northeast Beijing, and in waters and woodlands around the main urban area, as well as parks, reservoirs and scenic spots along rivers and lakes. 2) The research extracts 26 patches with a dI index greater than 0.5 as ecological sources. It is found that the overall connectivity level in rural areas of Beijing is low and uneven, and the IIC, PC and dI indices are higher in the northeast and lower in the southwest. The dI and IIC indices are much higher than NL in Miyun Reservoir and Guanting Reservoir, indicating that it is costly for birds to migrate to both habitats and there is no "stepping stone" between batches in the aforesaid habitats. 3) Under the scenario simulation, the migration path of birds in the south is severely blocked by Beijing Suburban Railway, which produces an avoidance effect among migratory birds, making the original migration path change to the main urban greenway and the northern mountainous area, accordingly leading to the decline of habitat connectivity upon corridor fracture. 4) The ecological network structure index of S3 is significantly different from that of S0 and S2, indicating that the construction of a suburban railway on a certain scale may affect habitat connectivity. The cost for migration path is quite high in all four scenarios, indicating that the quantity and quality of bird habitats are both low in rural areas, and none of the ecological network structure indices shows any obvious advantage. Based on the analysis results, the research proposes a few environmentally friendly and resource-saving optimization methods for linear project construction. 1) Assign different widths to the 25 important ecological corridors, 15 relatively important ecological corridors and 26 general ecological corridors extracted from the 325 potential ecological corridors identified based on a gravity model, and take different measures for them in combination with their respective importance. Specifically, for important ecological corridors, mainly take natural measures to ensure the stable connectivity thereof; for relatively important ecological corridors, take both natural and artificial measures to protect the connectivity thereof; for general ecological corridors, attract birds through artificial nesting and artificial feeding equipment to activate the ecological functions thereof. 2) Divide ecological sites into three levels by the natural breakpoint method according to the dI index, distinguish the functions of each level to improve the quality of habitat. 3) Add ecological nodes at the 17 intersections between important corridors within the area of high-frequency paths that are identified in this research, to supplement the blank of the ecological source area. As shown by the habitat simulation results, after the addition of ecological nodes, the level of ecological network index is improved compared with S3 scenario, indicating that the connectivity efficiency is improved, the material flow and information flow between birds become smoother, and the path cost is effectively reduced. 4) Optimize the 25 ecological fracture points identified at the intersections between ecological corridors and Beijing Suburban Railway, and take measures such as forest phase transformation, shelterbelt construction, planting type and quantity optimization, and farmland conversion into wetland to achieve zoning-based optimization of the habitat quality of buffer zones.
ConclusionBeijing Suburban Railway reduces the bird habitat connectivity in rural areas of Beijing. The comprehensive optimization measures proposed to alleviate the negative ecological effects of Beijing Suburban Railway are helpful to the ecological civilization construction of Beijing and the implementation of the strategy of rural revitalization, and can provide a certain reference for the conservation of biodiversity in rural areas and the ecological planning of rural landscape.
-
中国是生物多样性大国和农业大国,拥有数千年的农耕文明历史,然而在改革开放后的数十年间,在工业化、机械化、城镇化的推动下,乡村生产生活模式发生了巨大变化。实践中保护意识的缺失,导致不断增长的人为干扰难以得到有效遏制,加剧了人工建设对乡村地区生物栖息地的占据和分割,导致乡村地区生物多样性快速衰退、物种丰富度迅速降低,低受胁物种逐渐取代高受胁的保护物种[1]。目前,中国进入了乡村振兴的关键时期,规划了大量的线性工程项目穿越城市、割裂乡村,给乡村生态安全带来了严峻威胁。
乡村生物多样性的研究最早出现在19世纪末20世纪初的生态学领域[2],主要关注乡村物种数量、乡村半自然生境、农业景观等议题。近年来,国际上对乡村生物多样性的研究主要包括:单一物种内部及物种之间的多样性[3]、生物多样性对农业和生态系统功能的影响[4]、景观异质性对农业景观中生物多样性的作用等[5]。国内研究主要聚焦于农业景观类型多样性[6]、乡村景观生态安全格局[7]、景观连通性[8],以及乡村景观在不同尺度下的影响效应等方面[9-11]。
道路等线性工程是对乡村地区自然和半自然生境影响最广泛的人为干扰之一,但现实中该类项目的规划建设往往由工程专业主导,景观生态影响常被忽略,导致不合理的建设加剧了生物栖息地的破碎化[12]。目前关于线性工程对乡村生物多样性影响的研究相对较少,主要涉及生态学、景观生态学和道路生态学理论[13],关注道路对鸟类回避距离的影响[14]、高速公路对跨国保护区生态网络的影响[15]、乡村道路的线性特征对鸟类栖息地的影响等议题[16]。
栖息地连通性是指生物在栖息地资源间移动受到促进或阻碍的程度[17],主要受到栖息地斑块之间的功能连接影响[18]。栖息地通常对单一物种的生存或群落的丰富性有决定性作用[19],因此其内部的功能连接被视作生物多样性保护的关键[20]。目前,大熊猫、金丝猴等濒危物种的栖息地连通性得到较多关注[21-22],图论分析[23]、生态网络分析[24]、物种生境适宜性评价[25]等多种分析方法被引入,广泛应用在保护区保育决策[26]、三维景观监测[27]、环境影响评估[28]、国土空间规划[29]等研究和实践中。乡村地区的自然和半自然生境为大量鸟类提供了繁殖或越冬栖息地,但城乡发展和工程建设破坏了鸟类栖息地连通性,导致鸟类数量和栖息地承载力下降[1]。鸟类的高度移动性可快速反映环境变化对栖息地的影响,被广泛引入乡村生态环境评价相关的研究中[30],包括农业景观与鸟类景观连通性关系影响研究[31-32]、农业土地利用对鸟类景观尺度效应研究等[33],这些都表明了鸟类在乡村生物多样性研究中的良好指示物种的意义与可行性。本研究以北京市为例,分析典型线性工程中市郊铁路对乡村地区鸟类栖息地连通性的影响机制,并提出优化建议。
1. 研究区域
北京位于全球八大候鸟迁徙路线的东亚—澳大利西亚路线上,是鸟类迁徙和栖息的重要区域。笔者参照既有研究界定了北京市乡村地区范围[34],主要包括主城区周围海拔300 m以下的平原区和延庆平原周围海拔600 m以下浅山区中的自然和半自然生境(图 1)。北京现开通运营的市郊铁路有城市副中心线、延庆线、怀密线、通密线、东北环线5条线路,已开通的铁路长度共计439.3 km,全面建成后的市郊铁路长度共计1 045.0 km,其中47%的线路分布在乡村地区。
2. 数据来源与研究框架
2.1 数据来源与处理
从世界自然保护联盟(International Union for Conservation of Nature, IUCN)、世界鸟类名录(avibase.bsc-eoc.org)和《国家重点保护野生动物名录》(2021版)获取物种基础数据,提取名录中北京市域范围内极危、濒危、易危、近危受胁鸟类共61种,从中国观鸟记录中心数据库(www.birdreport.cn)及全球生物多样性信息网(www.gbif.org)获取鸟类点位数据,剔除物种“出现点”记录过少、与环境变量间相关性不显著、观测值出现空间自相关的无效数据,最终筛选出46种鸟类的494个有效点位数据,用于建模。环境变量数据包括气候因子和栖息地因子两方面,其中19个气候因子的数据来自WorldClim2.1数据库(www.worldclim.org),栖息地因子中的海拔、坡度、坡向数据来源于中国科学院地理空间数据云,归一化植被指数(normalized difference vegetation index, NDVI)因子的数据来源于中国科学院资源环境科学与数据中心。土地利用和与水体距离数据来源于中国科学院2020年30 m精细地表覆盖数据;北京市郊铁路数据来源于《北京市轨道交通线网规划(2020年—2035年)》。
2.2 研究框架
首先,采用物种分布模型模拟计算北京乡村地区鸟类潜在适宜性生境与适宜性指数,得到适宜性生境斑块;其次,利用Conefor 2.6软件计算连通度概率指数、连接度指数、连接数量等指标,对栖息地连通性进行分析;最后,结合市郊铁路的规划方案开展情景分析,设置理想情景(S0:市郊铁路未建前)、初步建设(S1:已开通线路)、局部建设(S2:在建规划线路)、全面建成(S3:全部线路)4个情景,利用SDMtoolbox分析市郊铁路对鸟类栖息地连通性的影响,并针对S3情景提出优化建议(图 2)。
2.2.1 根据物种分布模型确定生境斑块
最大熵模型Maxent是基于物种坐标点位和环境变量进行物种地理分布预测建模的有效工具[35]。使用Maxent3.4.4模拟鸟类乡村适宜生境分布,输入46种鸟类的494个有效出现点和23个环境因子,设随机测试的比例为25%。采用重采样法(Subsample)重复运算模型10次,选择刀切法(Jackknife)评估每个环境变量的贡献值和权重,选择响应曲线(response curves)创建环境变化图表。通过10次运算的平均值获得适宜性阈值采用灵敏度和特异度之和最大值(maximum training sensitivity plus specificity, MaxTSS)[28]。
2.2.2 鸟类栖息地连通性评估
Conefor 2.6软件是基于图论广泛运用于评估栖息地景观变化对功能连通性影响的工具,通过识别和优先考虑栖息地和景观连接的关键斑块,能够量化评估需要维持或改善的栖息地连通性,支持空间生态分析和保护规划决策[36]。本研究选取连接数量(number of link, NL)、整体连接度指数(integral index of connectivity, IIC)、连接度概率指数(probability of connectivity, PC)作为栖息地连通性量化指标[37](表 1)。迁徙性直接影响鸟类扩散参数,候鸟的迁徙繁殖与栖息地环境质量、冬季食物获取有较显著关系,与体型、重量发育等无显著关系,基于所选鸟类基本为候鸟,因此距离阈值数据取平均成年体重鸟类的距离阈值(13 km)[38-39]。引入斑块重要性指数(deltas IIC or deltas PC, dI)评估连通性的重要性[29],计算式如下:
dI=0.5dIIC+0.5dPC。 (1) 式中,dI是归一化处理后的重要性指数,dIIC是整体连接指数变化幅度,dPC是连接度概率指数变化幅度。
2.2.3 人为干扰对鸟类移动路径的情景模拟
针对传统方法过度简化景观过程的局限性[40],本研究采用SDMtoolbox模拟鸟类活动廊道。SDMtoolbox适用于分析复杂的环境要素,预测物种或基因的随机流动性,可显著提升计算效率,对栖息地异质性及其在扩散中的不同作用模拟更为准确[41-42]。本研究通过模拟鸟类在不同市郊铁路建设情景下的最佳路径,计算各情景下最小成本路径(least cost-path, LCP)的通过频率,并基于重力模型相互作用矩阵判断重要廊道。设置4种市郊铁路建设情景,根据层次分析法设定各情景阻力[42-44](表 2)。
阻力因子 权重 分类 阻力值 S0 S1~S4 土地利用类型 0.3 0.12 林地
草地
耕地
湿地
水域
建设用地50
10
70
20
40
100生境适宜性指数 0.7 0.28 - 0~100 到市郊铁路距离/km - 0.23 0~0.1
>0.1~2.8
>2.8100
40
1市郊铁路密度/km·km−2 - 0.37 0~0.04
0.05~0.10
0.11~0.20
0.21~0.30
0.31~0.601
10
30
50
100注:“-”表示该情景不涉及对应阻力因子。 依据式(2~5)中4个生态网络结构指数,量化生态源地和生态廊道的连通性以及生态网络的复杂性和生态效率[45]:
α=(l−v+1)/(2v−5), (2) β=l/v, (3) γ=l/lmax=l/(3v−6), (4) c=1−(l/d)。 (5) 式中:l是廊道数,v是生态源点数,lmax是最大可能的连接数,d是生态廊道的总长度;α指数反映物质循环度和网络流通性;β指数反映各生态源点之间的平均连线数;γ指数反映网络中所有生态源点的连接程度;成本比(cost ration, c)指数可量化网络的平均消费成本[46]。
3. 结果与分析
3.1 鸟类栖息地分布与连通性
Maxent模型结果表明,测试数据和训练数据平均AUC值为0.776和0.813,表明鸟类生境预测效果与实际分布拟合度较高。鸟类栖息地适宜性阈值(MaxTSS平均值)为0.430 3,经二值化①得到研究区内鸟类潜在栖息地适宜性分布图(图 3)。研究区鸟类适宜性生境分布的明显特征为:水库、河道及其附近的湿地、沼泽、耕地的栖息地分布指数最高。其中乡村地区生境斑块主要分布在西北区域的官厅水库和东北区域的密云水库附近、主城区周边的水域和林地,以及河湖沿岸的公园、水库和风景区。
乡村生境中适宜性栖息地总面积为1 052.2 km2,其中大于10 km2的28个生境斑块为一级潜在生态源地,笔者提取dI指数大于0.5的26个斑块为生态源地(图 4)。计算结果显示,研究区整体栖息地连通性水平较低且不均匀,IIC、PC及dI指数整体呈现东北高、西南低的特征,dI指数较高的斑块集中分布在平谷桃花海和泃河区域、潮白河流域平原及浅山区、密云水库、雁栖湖景区、怀柔水库及其西北方向军都山浅山区、通州北运河和潮白河交汇处。密云水库和官厅水库一带生境斑块的IIC指数较高,但NL不理想,表明到达两处栖息地的鸟类迁徙成本高,斑块间缺乏踏脚石(图 5)。
3.2 多情景下市郊铁路对鸟类栖息地连通性的影响
3.2.1 鸟类移动路径和生态廊道分析
分析结果表明,市郊铁路阻隔使鸟类迁徙路径产生回避效应,使原有移动路径向主城区绿道及北部深山区改变。由最小成本路径密度图(图 6)发现:S0情景的高频路径分布与各生态源地dI指数基本呈正相关;所有情景的高通过频率路径都集中在通州和顺义段的潮白河流域附近;S1~S3情景的西山浅山区、军都山浅山区鸟类迁徙路径有较明显扩散;因S2和S3情景中通州北部市郊铁路规划建设,导致温榆河流域及附近的鸟类通过频率大幅下降,形成明显生态断裂点;相较于S2情景,S3情景中由潮白河往北部平谷桃花海及泃河附近、密云水库及附近生态源地的鸟类通过频率明显提升,表明S3情景中其他路径成本高,路径流通性差,鸟类迁徙路径集中在一处。
本研究通过重力模型相互作用矩阵识别重要生态廊道,将相互作用强度大于10的判定为重要生态廊道,其余为一般生态廊道(图 7)。虽然S0情景的重要廊道数量不及S1~S3情景,但整体廊道分布均匀,表明鸟类廊道受铁路干扰弱且流通顺畅。由于市郊铁路的修建,鸟类迁徙路径产生回避效应,S1~S3情景的重要生态廊道较S0情景而言表现为更分散至城区四周;因S2和S3情景中规划建设的市郊铁路集中在南部,重要廊道北移至军都山地区,降低了南北向的连通性;S3情景包括了现状市郊铁路,因此北移至军都山地区的重要廊道较S2情景有减少。
3.2.2 生态网络连通性评价
分析各情景下生态网络结构指数发现(表 3),S0~S2情景的4项指数差异较小,α和γ指数整体水平一般且在不同情景中差距不大,表明供鸟类迁移的路径较理想,各生态源地之间的连接能够发挥一定的生态连通效能;β指数都大于1,表明廊道之间连接复杂且连通度高。S3情景的α、β和γ指数较S0~S2情景出现较明显的差异,表明市郊一定规模的铁路建设会影响栖息地连通性。c指数在4个情景中数值均较高,主要因为乡村地区鸟类栖息地本身数量和质量较低,因此指数都未表现优势。
表 3 不同情景生态网络的闭合度和连接度水平Table 3. Closure and connectivity of ecological network in different scenarios生态网络结构指数 S0 S1 S2 S3 α 1.19 1.13 1.15 0.87 β 3.12 3.00 3.04 2.54 γ 1.13 1.08 1.10 0.92 c 0.97 0.96 0.96 0.97 4. 北京乡村地区鸟类栖息地连通性优化建议
4.1 分级保护现有生态廊道和生态源地
针对市郊铁路S3情景,综合考虑生境适宜性、斑块连通性和乡村规划建设需求,提出生态廊道与源地的分级保护要求。共识别S3中的源地间潜在廊道325条,主要沿河流、沟渠、山谷、林地等分布,基于重力模型提取25条重要生态廊道、15条较重要廊道和26条一般生态廊道。参照北京DB11/T 1878—2021《鸟类生态廊道设计与建设规范》保障生态廊道宽度,对3级廊道分别设置150、80、20 m的宽度,按廊道重要性级别依次激活其生态服务功能。重要廊道承载着鸟类迁徙中主要的物质流和信息流的交换功能,以自然措施为主导,保障重要廊道的连通性水平稳定;较重要廊道分布较广泛,优先选取鸟类活动丰富和生境较好的区域,结合自然和人工措施保护连通性;一般廊道因连通性水平较低,可主要通过人工筑巢、设置人工进食设备等手段进行鸟类招引,逐步激活廊道生态功能。
依据dI指数用自然断点法将生态源地分为3级(图 8),一级源地是鸟类主要的栖息地,以优先保护为主,保障觅食、筑巢、休息等主要活动;二级源地强调生境修复,为鸟类提供基本的休息空间;三级源地分布较分散,连通性和生态效能较差,可通过种植食源性植物,丰富鸟类食物来源与质量,提升生境质量。
4.2 增设生态节点补充生态源地
由生态网络结构指数中c指数反映的较低栖息地数量和质量发现,高频路径区域存在多处廊道交汇的生态源点空白。识别高频路径区域内重要生态廊道之间的17个交汇点(图 9),增设生态节点为鸟类迁徙提供踏脚石,增强廊道连通性的稳定性。增设生态节点后的生态网络指数水平比S3情景(表 3)均有提高,α指数由0.87提升至1.01、β指数由2.54提升至2.88、γ指数由0.92提升至1.01,表明斑块间生态连通效能提升,鸟类物质流和信息流更加顺畅;c值为0.95(低于S3情景的取值),表明路径成本得到有效降低。
4.3 设置回避距离优化生态断裂点
在生态网络建设过程中,生态廊道与市郊铁路交会时所形成的生态断裂点,会严重阻碍物种的迁移扩散[46]。笔者识别了S3情景中市郊铁路与生态廊道的25个断裂点(图 10),其中怀密线与生态廊道交汇形成的断裂点最多(8个),集中分布在军都山山麓带,沿京密引水渠经怀柔水库、雁栖湖至密云水库白河入水口附近,分布在河流、沟渠周边;通密线、新城联络线和生态廊道交汇形成东部南北方向的断裂点共计10个,其中东郊湿地公园及凉水河附近集中分布了4个,严重阻碍了廊道的连通性;其余7个生态断裂点散布于研究区南部平原和官厅水库附近的沟渠、耕地。
为降低对鸟类迁徙路径的回避效应,本研究选取道路对多种生态因子的平均影响范围600 m为回避距离[47],在生态断裂点周围建立缓冲区。怀密线上的缓冲区北部临近林地,应开展林相改造,保证森林生态系统稳定;南部接近平原与城区,宜设防护林,提高植物多样性和郁闭度。东郊湿地公园及凉水河附近的缓冲区临近机场并位处城市近郊,应强调景观营造,优化植物种植种类和数量,设警示牌降低人为干扰。其余缓冲区用地以耕地为主,应提倡生态农业,对近河道处做必要的退耕还湿,保证整体栖息地质量。
5. 总结与讨论
本研究关注城镇化进程中线性工程建设的生态效应,以北京市为例,通过图论和生态网络分析,设置不同情景研究市郊铁路建设对鸟类栖息地连通性的影响。研究结果表明:1)北京乡村地区鸟类生态源地面积小且分布不均,约占乡村地区面积的18%,主要分布在水库、河道及其附近的湿地、耕地,稀疏分布于南部平原区和西部浅山区,连通性水平不理想,存在高成本的鸟类迁徙路径和明显的踏脚石缺失;2)在S0~S3情景中,鸟类迁徙路径因市郊铁路建设产生回避效应,逐渐向北偏移,路径成本增加。S3情景的生态走廊分布呈北密南疏,重要生态廊道主要分布在东部和北部,南部存在生态断裂点。
针对研究结果,笔者提出的北京乡村地区鸟类栖息地连通性优化建议如下。1)分级保护,将生态廊道和生态源地均分为3级,赋予各级廊道不同宽度范围,按时序优化,激活其生态效益;区分生态源地各级的优化功能,提升生境质量。2)增设源地,在重要廊道和路径高频区交汇处增加17个生态节点作为鸟类迁徙的踏脚石,经计算优化后的生态网络连通性水平整体提高。3)优化断裂点,在生态廊道与市郊铁路交会处识别25个的生态断裂点并设缓冲区,采取林相改造、防护林建设、优化种植种类和数量、退耕还湿等措施,分区域优化缓冲区生境质量。
本研究关注当前风景园林理论和实践中的重要课题,探讨线性工程建设的生态效应及其优化方法。采用的景观生态学、图论分析、情景分析等多种方法,有助于北京市的生态文明建设和乡村振兴战略的实施,为中国乡村地区的生物多样性保护及乡村景观生态规划提供了一定参考。本研究聚焦北京乡村地区鸟类栖息地连通性分析,并未考虑其他范围内生境斑块的影响,后续可进一步开展中心城区及深山地区鸟类生境斑块的生态效应,进一步完善乡村地区生物多样性研究。
-
指标名称 指标含义描述 NL 表示斑块之间的连接数量,连接数量越多代表景观斑块之间的联系越紧密 IIC 通过设定阈值评估任意2个斑块之间是否连通 PC 评估任意2个斑块之间的连接概率,指数随连通性增加而提高,相比于IIC分析不受相邻栖息地斑块的影响 dI 表示斑块对栖息地连通性的贡献率,通过移除任意斑块,评估连通性的变化幅度,指数越大表明该斑块承载的物质流和信息流越丰富 阻力因子 权重 分类 阻力值 S0 S1~S4 土地利用类型 0.3 0.12 林地
草地
耕地
湿地
水域
建设用地50
10
70
20
40
100生境适宜性指数 0.7 0.28 - 0~100 到市郊铁路距离/km - 0.23 0~0.1
>0.1~2.8
>2.8100
40
1市郊铁路密度/km·km−2 - 0.37 0~0.04
0.05~0.10
0.11~0.20
0.21~0.30
0.31~0.601
10
30
50
100注:“-”表示该情景不涉及对应阻力因子。 表 3 不同情景生态网络的闭合度和连接度水平
Table 3 Closure and connectivity of ecological network in different scenarios
生态网络结构指数 S0 S1 S2 S3 α 1.19 1.13 1.15 0.87 β 3.12 3.00 3.04 2.54 γ 1.13 1.08 1.10 0.92 c 0.97 0.96 0.96 0.97 -
[1] DONALD P F, EVANS A D. Habitat Connectivity and Matrix Restoration: The Wider Implications of Agri-environment Schemes[J]. Journal of Applied Ecology, 2006, 43 (2): 209-218. doi: 10.1111/j.1365-2664.2006.01146.x
[2] FORMAN R T T. Urban Ecology Principles: Are Urban Ecology and Natural Area Ecology Really Different?[J]. Landscape Ecology, 2016, 31(8): 1653-1662. doi: 10.1007/s10980-016-0424-4
[3] PHALAN B, ONIAL M, BALMFORD A, et al. Reconciling Food Production and Biodiversity Conservation: Land Sharing and Land Sparing Compared[J]. Science(80-), 2011, 1333(6047): 333.
[4] JACKSON LE, PACSUAL U, HORDGKIN T. Utilizing and Conserving Agrobiodiversity in Agricultural Landscapes[J]. Agriculture Ecosystems and Environment, 2006, 121 (3): 196-210.
[5] FAHRIG L, BAUDRY J, BROTONS L, et al. Functional Landscape Heterogeneity and Animal Biodiversity in Agricultural Landscapes[J]. Ecology Letters, 2011, 14 (2): 101-112. doi: 10.1111/j.1461-0248.2010.01559.x
[6] 边振兴, 李晓璐, 于淼. 东北平原典型玉米种植区农业景观植物多样性研究: 以昌图县为例[J]. 中国生态农业学报, 2018, 26(4): 480-492. BIAN Z X, LI X L, YU M. The Plant Diversity of Agro-landscapes in Typical Maize Planting Areas in the Northeast Plain, China: A Case Study of Changtu County[J]. Chinese Journal of Eco-Agriculture, 2018, 26(4): 480-492
[7] 王嘉, 高静, 袁睦茜, 等. 生物保护视角下乡村景观生态安全格局构建: 以山西省临汾市汾西县永安镇后加楼村为例[J]. 生态科学, 2021, 40(1): 155-161. WANG J, GAO J, YUAN M X, et al. Construction of Rural Landscape Ecological Security Pattern from the Perspective of Biological Protection: A Case Study of Houjialou Village, Yong'an Town, Fenxi County, Linfen City, Shanxi Province[J]. Ecological Science, 2021, 40 (1): 155-161.
[8] 陈思清, 汪洁琼, 王南. 融合景观连通性的城镇规划与生物多样性生态服务效能优化[J]. 风景园林, 2017, 24(1): 66-81. doi: 10.14085/j.fjyl.2017.01.0066.16 CHEN S Q, WANG J Q, WANG N. Integrating Landscape Connectivity into Town Planning for Biodiversity Ecosystem Service Provision[J]. Landscape Architecture, 2017, 24 (1): 66-81. doi: 10.14085/j.fjyl.2017.01.0066.16
[9] 卢训令, 刘俊玲, 丁圣彦. 农业景观异质性对生物多样性与生态系统服务的影响研究进展[J]. 生态学报, 2019, 39(13): 4602-4614. LU X L, LIU J L, DING S Y. Impact of Agricultural Landscape Heterogeneity on Biodiversity and Ecosystem Services[J]. Acta Ecologica Sinica, 2019, 39 (13): 4602-4614.
[10] 宋博, 丁圣彦, 赵爽, 等. 农业景观异质性对生物多样性及其生态系统服务的影响[J]. 中国生态农业学报, 2016, 24(4): 443-450. doi: 10.13930/j.cnki.cjea.160003 SONG B, DING S Y, ZHAO S, et al. Effects of Agricultural Landscape Heterogeneity on Biodiversity and Ecosystem Services[J]. Chinese Journal of Eco-Agriculture, 2016, 24 (4): 443-450. doi: 10.13930/j.cnki.cjea.160003
[11] 刘云慧, 张鑫, 张旭珠, 等. 生态农业景观与生物多样性保护及生态服务维持[J]. 中国生态农业学报, 2012, 20(7): 819-824. doi: 10.3724/SP.J.1011.2012.00819 LIU Y H, ZHANG X, ZHANG X Z, et al. Eco-agricultural Landscape for Biodiversity Conservation and Ecological Service Maintenance[J]. Chinese Journal of Eco-Agriculture, 2012, 20 (7): 819-824. doi: 10.3724/SP.J.1011.2012.00819
[12] POCOCK Z, LAWRENCE R E. How Far into a Forest Does the Effect of a Road Extend? Defining Road Edge Effect in Eucalypt Forests of South-Eastern Australia [EB/OL]. (2005)[2022-10-20]. https://escholarship.org/uc/item/4q576877.
[13] 殷利华, 万敏, 姚忠勇. 道路生态学研究及其对我国道路生态景观建设的思考[J]. 中国园林, 2011, 27(9): 56-59. doi: 10.3969/j.issn.1000-6664.2011.09.014 YIN L H, WAN M, YAO Z Y. Research on Road Ecology and Consideration of Road Ecological Landscape Construction in China[J]. Chinese Landscape Architecture, 2011, 27 (9): 56-59. doi: 10.3969/j.issn.1000-6664.2011.09.014
[14] 刘刚, 刘芳博, 鲁世伟. 道路噪声与画眉鸟退避率的定量关系[J]. 生态学杂志, 2018, 37(12): 3685-3690. doi: 10.13292/j.1000-4890.201812.028 LIU G, LIU F B, LU S W. The Quantitative Relationship Between Road Traffic Noise and Retreat Rate of Thrush[J]. Chinese Journal of Ecology, 2018, 37 (12): 3685-3690. doi: 10.13292/j.1000-4890.201812.028
[15] GURRUTXAGA M, RUBIO L, SAURA S. Key Connectors in Protected Forest Area Networks and the Impact of Highways: A Transnational Case Study from the Cantabrian Range to the Western Alps (SW Europe)[J]. Landscape and Urban Planning, 2011, 101 (4): 310-320. doi: 10.1016/j.landurbplan.2011.02.036
[16] HALL M, NIMMO D, WASTON S, et al. Linear Habitats in Rural Landscapes Have Complementary Roles in Bird Conservation[J]. Biodiversity and Conservation, 2018, 27 (27): 2605-2623.
[17] TAYLOR P D, FAHRIG L, MERRIAM H G. Connectivity Is a Vital Element of Landscape Structure[J]. Oikos, 1993, 68 (3): 571-573. doi: 10.2307/3544927
[18] AYRAM C C, MENDOZA M E, ETTER A, et al. Habitat Connectivity in Biodiversity Conservation: A Review of Recent Studies and Applications[J]. Progress in Physical Geography, 2016, 40(1): 7-37.
[19] BENNETT A F, RADFORD J Q, HASLEM A. Properties of Land Mosaics: Implications for Nature Conservation in Agricultural Environments[J]. Biological Conservation, 2006, 133 (2): 250-264. doi: 10.1016/j.biocon.2006.06.008
[20] NEWBOLD T, HUDSON L N, HILL S L L, et al. Global Effects of Land Use on Local Terrestrial Biodiversity[J]. Nature, 2015, 520 (7545): 45-50. doi: 10.1038/nature14324
[21] 毛泽恩, 洪洋, 王玉君, 等. 凉山山系大熊猫局域种群栖息地连通性动态特征[J/OL]. 生态学杂志: 1-14[2023-02-17]. http://kns.cnki.net/kcms/detail/21.1148.q.20220815.1011.004.html. MAO Z E, HONG Y, WANG Y J, et al. Dynamic Patterns of Habitat Connectivity of Local Giant Panda Populations in Liangshan Mountain[J/OL]. Chinese Journal of Ecology: 1-14[2023-02-17]. http://kns.cnki.net/kcms/detail/21.1148.q.20220815.1011.004.html.
[22] 张宇, 李丽, 张于光, 等. 人为干扰对神农架川金丝猴连通性及遗传多样性的影响[J]. 生态学报, 2019, 39(8): 2935-2945. ZHANG Y, LI L, ZHANG Y G, et al. Study on the Effect of Human Disturbance on the Connectivity and Genetic Diversity of Sichuan Snubnosed Monkey (Rhinopithecus roxellana) in Shennongjia National Park[J]. Acta Ecologica Sinica, 2019, 39(8): 2935-294
[23] 梅泽文. 基于图论的滇金丝猴栖息地景观连通性动态研究[J]. 林业调查规划, 2018, 43(1): 52-56. doi: 10.3969/j.issn.1671-3168.2018.01.010 MEI Z W. Dynamic Study on Landscape Connectivity of Rhinopithecus bietiHabitats Based on Graph[J]. Theory Forest Inventory and Planning, 2018, 43 (1): 52-56. doi: 10.3969/j.issn.1671-3168.2018.01.010
[24] 罗言云, 谭小昱, 何柳燕, 等. 大熊猫国家公园邛崃山-大相岭片区生态网络构建及优化[J]. 风景园林, 2022, 29(8): 93-101. doi: 10.14085/j.fjyl.2022.08.0093.09 LUO Y Y, TAN X Y, HE L Y, et al. Construction and Optimization of Ecological Network in the Qionglai Mountain-Daxiangling Area of Giant Panda National Park[J]. Landscape Architecture, 2022, 29 (8): 93-101. doi: 10.14085/j.fjyl.2022.08.0093.09
[25] 韩家亮. 麻阳河自然保护区黑叶猴空间利用模式及生境适宜性评价研究[D]. 呼和浩特: 内蒙古农业大学, 2021. HAN J L. Study on Space Utilization Pattern and Habitat Evaluation of Trachypithecus Francoisi in Mayanghe Nature Reserve[D]. Hohhot: Inner Mongolia Agricultural University, 2021
[26] 张宇, 李丽, 吴巩胜, 等. 基于生境斑块的滇金丝猴景观连接度分析[J]. 生态学报, 2016, 36(1): 51-58. ZHANG Y, LI L, WU G S, et al. Analysis of Landscape Connectivity of the Yunnan Snub-Nosed Monkeys (Rhinopithecus bieti) Based on Habitat Patches[J]. Acta Ecologica Sinica, 2016, 36 (1): 51-58.
[27] LIU Z H, HUANG Q D, TANG G P. Identification of Urban Flight Corridors for Migratory Birds in the Coastal Regions of Shenzhen City Based on Three-Dimensional Landscapes[J]. Landscape Ecology, 2021, 36: 2043-2057. doi: 10.1007/s10980-020-01032-6
[28] TARABON S, BERGES L, DUTOIT T, et al. Environmental Impact Assessment of Development Projects Improved by Merging Species Distribution and Habitat Connectivity Modelling[J]. Journal of Environmental Management, 2019, 241: 439-449.
[29] 贾一非, 王云才. 由单一走向多样: 平原农业区生物多样性保护的规划途径: 以辽宁省黑山县为例[J]. 中国园林, 2022, 38(7): 26-31. JIA Y F, WANG Y C. From Single to Diverse: A Planning Approach to Biodiversity Conservation in Plain Agricultural Area: The Case of Heishan County, Liaoning Province[J]. Chinese Landscape Architecture, 2022, 38 (7): 26-31.
[30] DONALD PF, GREE RE, HEATH MF. Agricultural Intensification and the Collapse of Europe's Farmland Bird Populations[J]. The Royal Society, 2001, 268 (1462): 25-29. doi: 10.1098/rspb.2000.1325
[31] GIL-TENA A, NABUCET J, MONY C, et al. Woodland Bird Response to Landscape Connectivity in an Agriculture-Dominated Landscape: A Functional Community Approach[J]. Community Ecology, 2014, 15(2): 256-268. doi: 10.1556/ComEc.15.2014.2.14
[32] ZHANG J J, PANNELL J L, CASE B S, et al. Interactions Between Landscape Structure and Bird Mobility Traits Affect the Connectivity of Agroecosystem Networks[J]. Ecological Indicators, 2021, 129: 107962. doi: 10.1016/j.ecolind.2021.107962
[33] ZINGG S, GRENZ J, HUMBERT JY. Landscape-Scale Effects of Land Use Intensity on Birds and Butterflies[J]. Agriculture, Ecosystems & Environment, 2018, 267: 119-128.
[34] 黄越, 顾燚芸, 阳文锐, 等. 如何在北京充分实现受胁鸟类栖息地保护?[J]. 生物多样性, 2021, 29(3): 340-350. HUANG Y, GU Y Y, YANG W Y, et al. How to Best Preserve the Irreplaceable Habitats of Threatened Birds in Beijing?[J]. Biodiversity Science, 2021, 29 (3): 340-350.
[35] PHILLIPS S J, ANDERSON R P, DUDÍK M, et al. Opening the Black Box: An Open-Source Release of Maxent[J]. Ecography, 2017, 40 (7): 887-893. doi: 10.1111/ecog.03049
[36] TORNE S S. Conefor Sensinode 2.2: A Software Package for Quantifying the Importance of Habitat Patches for Landscape Connectivity[J]. Environmental Modelling & Software, 2009 (1): 24.
[37] SAURA S, PASCUAL-HORTAL L I A. A New Habitat Availability Index to Integrate Connectivity in Landscape Conservation Planning: Comparison with Existing Indices and Application to a Case Study[J]. Landscape and Urban Planning, 2007, 83 (2-3): 91-103. doi: 10.1016/j.landurbplan.2007.03.005
[38] SUTHERLAND G D, HARESTAD A S, PRICE K, et al. Scaling of Natal Dispersal Distances in Terrestrial Birds and Mammals[J]. Conservation Ecology, 2000, 4 (1): 1-36.
[39] PARADIS E, BAILLIE S R, SUTHERLAND W J, et al. Patterns of Natal and Breeding Dispersal in Birds[J]. Journal of Animal Ecology, 1998, 67 (4): 518-536. doi: 10.1046/j.1365-2656.1998.00215.x
[40] RUDNICK D A, RYAN S J, BEIER P, et al. The Role of Landscape Connectivity in Planning and Implementing Conservation and Restoration Priorities[J]. Issues in Ecology, 2012, 16: 1-20.
[41] BROWN J L. SDMtoolbox: A Python-Based GIS Toolkit for Landscape Genetic, Biogeographic and Species Distribution Model Analyses[J]. Methods in Ecology and Evolution, 2014, 5(7): 694-700.
[42] 刘阳, 欧小杨, 郑曦. 整合绿地结构与功能性连接分析的城市生物多样性保护规划[J]. 风景园林, 2022, 29(1): 26-33. doi: 10.14085/j.fjyl.2022.01.0026.08 LIU Y, OU X Y, ZHENG X. Urban Biodiversity Conservation Planning Integrating Green Space Structural and Functional Connection Analysis[J]. Landscape Architecture, 2022, 29 (1): 26-33. doi: 10.14085/j.fjyl.2022.01.0026.08
[43] 王春晓, 何建华, 刘殿锋, 等. 土地利用变化对鸟类栖息地连通性的影响: 以鄂州市为例[J]. 生态学报, 2022, 42(10): 4197-4208. WANG C X, HE J H, LIU D F, et al. Impact of Land Use Change on Bird Habitat Connectivity: A Case Study in Ezhou City[J]. Acta Ecologica Sinica, 2022, 42 (10): 4197-4208.
[44] 孔亚平, 王云, 张峰. 道路建设对野生动物的影响域研究进展[J]. 四川动物, 2011, 30(6): 986-991. doi: 10.3969/j.issn.1000-7083.2011.06.029 KONG Y P, WANG Y, ZHANG F. Review on Road-Effect Zone of Wildlife[J]. Sichuan Journal of Zoology, 2011, 30 (6): 986-991. doi: 10.3969/j.issn.1000-7083.2011.06.029
[45] WANG S, WU M Q, HU M M, et al. Promoting Landscape Connectivity of Highly Urbanized Area: An Ecological Network Approach[J]. Ecological Indicators, 2021, 125: 107487. doi: 10.1016/j.ecolind.2021.107487
[46] NIE W B, SHI Y, SIAW M J, et al. Constructing and Optimizing Ecological Network at County and Town Scale: The Case of Anji County, China[J]. Ecological Indicators, 2021, 132: 108294. doi: 10.1016/j.ecolind.2021.108294
[47] FORMAN R T T, DEBLINGER R D. The Ecological Road-Effect Zone of a Massachusetts (U.S.A. ) Suburban Highway[J]. Conservation Biology, 2000, 14 (1): 36-46. doi: 10.1046/j.1523-1739.2000.99088.x
-
期刊类型引用(2)
1. 项杰,邹伟,李胜,陶一舟. 生态修复视角下浙江省白鹭适应型驳岸特征指标分析及修复策略研究. 园林. 2025(02): 105-113 . 百度学术
2. 曹瀚文,祝明建,祝诗榕,马滢. 基于水鸟飞行阻碍的粤港澳大湾区生态廊道的构建与复合. 中国城市林业. 2025(01): 168-178 . 百度学术
其他类型引用(2)