CN 11-5366/S     ISSN 1673-1530
“风景园林,不只是一本期刊。”

城市公园声景长时感知模型研究——以加拿大温哥华市3个城市公园为例

Modeling Long-Term Perceived Soundscape in Urban Parks: A Case Study of Three Urban Parks in Vancouver, Canada

  • 摘要: 为探究循环神经网络(RNN)对长时间模拟城市公园声景感知响度(PLS)和感知协调度(PHS)的适用性,采用具有时序记忆和延迟功能的Elman神经网络和NARX神经网络分别进行验证。将城市公园声景和光景客观指标作为输入层,PLS和PHS作为输出层进行神经网络训练和模拟。研究结果显示:1)PLS和PHS同时与等效A声级(LAeq)、背景声(L95)以及光景客观指标中的直射光(TL)之间具有相关性;2)Elman神经网络对PLS有较好的长时模拟效果,而NARX神经网络则对PHS具有较优的长时模拟效果;3)从输入层各参数的贡献率来看,等效A声级(LAeq)、前景声(L5)、心理声学参数响度(LO)和漫射光(EL)同时在两个RNN模型中体现出了较高的贡献度。该结果表明,循环神经网络适用于城市公园的声景长时感知模型,并为城市公园的声景优化设计提供了有效的评估方法和参考依据。

     

    Abstract: To explore the applicability of Recurrent Neural Network (RNN) to simulate the long-term perceived loudness and harmoniousness of soundscape (PLS, PHS) in urban parks, this research uses the Elman and NARX neural networks with temporal memory and delay functions for separate validation. It takes objective parameters of soundscape and lightscape as inputs, and PLS and PHS as outputs to train and simulate the models of Elman and NARX neural network. The results show that: 1) There is correlation between PLS, PHS, LAeq, background sound (L95) and direct light (TL); 2) The Elman neural network has better long-term simulation effect on PLS and NARX neural network has better long-term simulation effect on PHS; 3) From the contribution rate of each parameter in the input layer, LAeq, foreground sound (L5), psychoacoustic parameter loudness (LO) and diffuse light (EL) simultaneously show a higher contribution in the two RNN models. The results indicate that the RNN is suitable for the long-term perceived soundscape in urban parks, providing an effective method and reference for the optimal design of soundscape in urban parks.

     

/

返回文章
返回