CN 11-5366/S     ISSN 1673-1530
“风景园林,不只是一本期刊。”
  • 微信订阅号
  • 中文核心期刊
  • 中国科技核心期刊 (中国科技论文统计源期刊)

“识别—构建—管控”规划路径下生态系统服务供需应用研究进展

余丽, 马淇蔚, 徐丽华

余丽,马淇蔚,徐丽华.“识别—构建—管控”规划路径下生态系统服务供需应用研究进展[J].风景园林,2024,31(3):89-98.
引用本文: 余丽,马淇蔚,徐丽华.“识别—构建—管控”规划路径下生态系统服务供需应用研究进展[J].风景园林,2024,31(3):89-98.
YU L, MA Q W, XU L H. Research Progress on Application of Ecosystem Services Supply and Demand Application Under the Planning Path of “Identification – Establishment – Management and Control”[J]. Landscape Architecture, 2024, 31(3): 89-98.
Citation: YU L, MA Q W, XU L H. Research Progress on Application of Ecosystem Services Supply and Demand Application Under the Planning Path of “Identification – Establishment – Management and Control”[J]. Landscape Architecture, 2024, 31(3): 89-98.

“识别—构建—管控”规划路径下生态系统服务供需应用研究进展

基金项目: 浙江省自然科学基金“国土空间格局多目标优化下的城市开发边界管控机制研究”(编号 LQ22E080007);国家自然科学基金“生态位视角下基于物种分布与人类活动冲突机理的湾区城市群生态空间优化研究”(编号 52308083)
详细信息
    作者简介:

    余丽/女/浙江农林大学风景园林与建筑学院在读硕士研究生/研究方向为风景园林与生态规划

    马淇蔚/男/博士/浙江农林大学风景园林与建筑学院副教授/研究方向为城乡生态规划

    徐丽华/女/博士/浙江农林大学风景园林与建筑学院副院长、教授/研究方向为城乡生态规划

    通讯作者:

    马淇蔚: maqiwei@zafu.edu.cn

  • 中图分类号: TU986

Research Progress on Application of Ecosystem Services Supply and Demand Application Under the Planning Path of “Identification – Establishment – Management and Control”

More Information
    Author Bio:

    YU Li is a master student in the School of Landscape Architecture, Zhejiang A&F University. Her research focuses on landscape architecture and ecological planning

    MA Qiwei, Ph.D., is an associate professor in the School of Landscape Architecture, Zhejiang A&F University. His research focuses on urban and rural ecological planning

    XU Lihua, Ph.D., is vice dean of and a professor in the School of Landscape Architecture, Zhejiang A&F University. Her research focuses on urban and rural ecological planning

    Corresponding author:

    MA Qiwei: maqiwei@zafu.edu.cn

  • 摘要:
    目的 

    在生态文明建设的时代背景下,城市对生态系统服务(ecosystem services, ESs)的需求与日俱增,ESs供需有待平衡。因此,判定并优化ESs供需关系对于实现生态保护与人类福祉提升的协调具有重要意义。

    方法 

    首先,利用CiteSpace对2000—2022年国内外ESs供需文献展开关键词和聚类演变分析;其次,梳理ESs供需机理研究进展,并针对绿色基础设施、生态网络和生态安全格局3种模式,以“识别—构建—管控”为规划路径,对ESs供需基础研究的应用领域进行综述。

    结果 

    1)ESs供需基础研究成果能够针对性解决生态规划面临的缺乏生态与经济社会系统的互动考量、生态保护与开发目标模糊的问题。2)ESs供需量化通过指标体系评估、复合指数构建、空间叠图分析3种途径进行要素识别;ESs供需关系判定在绿色基础设施源斑块提取、生态网络连通性提升、生态安全等级判定方面发挥关键作用。3) ESs供需优化与国土空间规划体系的多层级衔接体现在:宏、中观层面重在划定管控边界线、管控分区;微观层面通过协调ESs供需开展详细设计,并针对特定生态要素承载的ESs功能进行专项规划,强化空间管制。

    结论 

    在综合分析ESs供需机理及其应用领域的基础上,提出ESs供需应用研究的3个发展方向:1)现有ESs供需水平测算有待集成多学科技术方法,2)生态规划模式从考量静态供需关系向体现动态ESs供需流转变,3)由单一政策的工具到系统化的政策工具体系构建。该研究成果将为完善生态规划理论与实践体系、加快ESs供需基础研究的应用转化提供重要支撑。

    Abstract:
    Objective 

    In the era of ecological civilization construction, the city’s demand for ecosystem services (ESs) is increasing. There is a need to balance the supply and demand of ESs. Therefore, determining and optimizing the relationship between ESs supply and demand is of great significance, especially for the coordination of ecological protection and human well-being improvement.

    Methods 

    Firstly, based on CiteSpace, this research conducts keywords and cluster evolution analysis of domestic and foreign literature on ESs supply and demand over the past 20 years. Secondly, the research reviews the research progress on the mechanisms of ESs supply and demand. In response to three models: green infrastructure, ecological network, and ecological security pattern, the research summarizes the application fields of the basic research on ESs supply and demand under the planning path of “identification −establishment − management and control”.

    Results 

    The results show that: 1) The research on ESs supply and demand has obtained significant results in both basic research and applied practice, which is related to ecological planning practice. Supply and demand relationship, ecological compensation, ESs flow, and human well-being are the frontiers and hotspots of the research on ESs supply and demand. By searching these keywords, the research finds that ESs supply and demand is mainly based on basic research in the early stage. In recent years, the research focus has shifted to the application of ESs supply and demand theories and methods. There is a trend toward combining residents’ well-being, landscape pattern, and decision optimization. Applying the achievements of ESs supply and demand mechanisms to practical research based on the ecological planning path of “identification − establishment − management and control” can solve issues in traditional ecological planning, such as weak correlation between natural ecosystems and economic-social systems, unclear ecological protection objectives, and mismatch between the supply and demand of ecological resources. 2) Green infrastructure (GI), ecological network (EN), and ecological security pattern (ESP) are the three main patterns in existing ecological planning. As for the research on the identification of ecological elements, there are mainly three quantification methods for ESs supply and demand, including the index system method, index construction and evaluation method, and spatial superposition analysis method. First, as for index system evaluation, it only considers the supply or demand side of the research in the early stage, and then begins to integrate ESs supply and demand indicators for a comprehensive evaluation later. Second, as for index measurement, most researches establish the coupling degree index, coordination degree index, coupling coordination degree model, and supply − demand balance index. Third, as for the use of spatial superposition analysis, most researches map the spatial pattern of supply and that of demand respectively, with such maps being then superimposed on the results of supply and demand measurement for matching analysis. The aforesaid three methods vary in application situation and scale. The determination of the relationship between ESs supply and demand is specific to the construction of ecological pattern. The construction of GI, EN, and ESP patterns are all based on the theory of “patch − corridor − substrate” in landscape ecology. Among them, GI construction focuses on the selection of sources and the integration of human well-being into the research on ESs supply and demand. It aims to solve the problem of serious imbalance between supply and demand for GI services and to explore the optimization strategy of GI. EN is inclined toward corridor network construction, and the determination of network connectivity and systematic strengths and weaknesses is crucial to the construction of EN pattern. ESP construction focuses on the quantification results of ESs supply and demand evaluation and aims to determine the level of ecological security patterns. 3) In the practice of management and control of territorial ecological space for optimizing ESs supply and demand, there are researches discussing such practice from different levels of territorial space. First, at the macro and meso levels, the emphasis lies on delineating management and control boundaries and territorial ecological restoration zones. Second, detailed planning is carried out to implement the results of ecological zoning at the micro level. Third, at the specialized level, reasonable planning is conducted targeting ESs functions carried by specific elements of ecological space to strengthen the management and control of spatial use.

    Conclusion 

    Based on the comprehensive analysis of the research on ESs supply and demand mechanisms and their application fields, the research proposes three developmental directions for the application research of ESs supply and demand. First, adopt multidisciplinary technical methods to calculate ESs supply and demand level. Second, shift the focus of ecological planning pattern from static supply and demand relationship to dynamic flow of ESs supply and demand. Third, replace single policy tools with a systematic policy tool system. The above contents may provide important support for improving the theory and practice system of ecological planning and accelerating the applied transformation of the basic research on ESs supply and demand.

  • 生态系统服务(ecosystem services, ESs)是指人类从生态系统直接或间接获得的惠益,被视为维持和改善人类福祉的基础[1]。伴随生态文明建设的深入推进和绿色高质量发展的新要求,城市对ESs的需求愈加旺盛[2]。实现生态产品的有序供给,有利于促进ESs供给与人类福祉提升需求的协调。因此,测算ESs供需水平,判定供需关系,并展开优化调控,对于践行生态文明理念、保障区域生态安全、推动城市高质量发展具有重要意义。

    目前,ESs供需机理研究经历了从ESs供需概念内涵解读、供需水平测度,到供需关系判定及驱动机制分析的过程。通过系统化研究,学界、业界对于ESs供需概念已达成共识,且形成了较为成熟的ESs供需水平测算的空间量化方法,针对不同地域展开了大量探索,并从自然与人为2个方面总结了ESs供需影响因素。基于供需机理研究的丰富成果,推动ESs供需研究向规划实践转化成为当前关注的焦点,但目前有待明确ESs供需应用的领域,且有待探索ESs供需基础研究成果融入规划实践的路径。

    生态规划的核心目标是保护高质量生态空间,从而实现国土空间资源的合理、有效配置[3]。生态规划的任务首先是识别关键生态要素;其次,将不同生态要素进行连通性模式构建,以实现要素间物质能量交换并保障生态系统的完整性;最后,通过与国土空间规划体系的多层级衔接,保障生态空间管控的有效性。传统生态规划仅关注生态系统本身,以一种被动的保护方式来保障生态空间规模、质量、分布长期不变。从供需逻辑来看,若只考虑供给端的长期性严格保护,将无法有效释放生态空间价值,阻碍生态空间对经济发展的重要支撑作用;但若只考虑需求端的开发,将导致对生态空间价值的无序、过度利用,直至生态空间面临不可逆转的退化甚至消亡,从而加剧经济发展与生态保护的矛盾。因此,从经济社会系统的诉求出发,在生态安全约束的前提下,合理开发和保护生态空间,是被动式保护转向主动式利用的关键。ESs供需匹配能够耦合自然生态系统和经济社会系统,通过供需方的空间关系准确识别供需失衡区并进行规划治理[4]。因此,将ESs供需匹配机理成果作为开展生态规划实践的科学依据,对于协调生态与经济社会系统的协同发展,实现生态保护与高质量发展的双赢具有重要意义。笔者基于现有研究归纳了ESs供需研究融入生态规划实践的路径(图1)。

    图  1  ESs供需研究融入生态规划实践的路径示意
    Figure  1.  Schematic diagram of the pathway for integrating the research on ESs supply and demand into ecological planning practice

    综上,首先使用CiteSpace对国内外2000—2022年的ESs供需研究的关键词及其聚类演变进行分析,明确ESs供需应用研究的发展脉络及研究热点;其次,针对绿色基础设施(green infrastructure, GI)、生态网络(ecological network, EN)、生态安全格局(ecological security pattern, ESP)3种主要模式,以“识别—构建—管控”为路径梳理ESs供需应用研究,探明ESs供需基础研究与生态规划实践的对接点;最后,针对现有研究的不足,提出ESs供需应用研究的发展方向。

    外文文献数据以WoS(Web of Science)核心合集作为数据源,检索主题词限定为“ ecosystem service”和“ supply and demand”,检索时间跨度为2000—2022年,共得到文献1 124篇。中文文献数据以中国知网(CNKI)作为数据源,选取学术期刊数据库,使用高级检索,检索主题词限定为“生态系统服务”和“供需”或“生态系统服务”和“供给”和“需求”,检索时间跨度为2000—2022年,结果为489篇。为使选取的文献具有一定质量与影响力,对以上所得文献进行筛选,考虑到数据库收录的期刊存在变更周期,因此本研究选择2022年最新版数据库来源期刊。外文文献来源期刊选取SCI及SSCI收录期刊,并剔除影响因子小于1的期刊,最终得到1 052篇外文期刊文献;中文文献来源期刊选取科学引文索引(SCI)、工程索引(EI)、《北大中文核心要目总览》《中文社会科学引文索引》数据库(CSSCI)、中国科学引文数据库(CSCD),以及中国人文社会科学核心期刊(AMI)收录期刊,并去除与本研究主题无关及重复的文献,最终得到337篇中文期刊文献。

    利用CiteSpace 6.1.R2软件,对上述筛选得到的共1389篇中英文文献进行转化、去重,将时间切片设置为1年,选择“pruning sliced networks”为节点类型,对关键词共现和聚类分别进行可视化分析。

    根据WoS关键词共现图谱(图2-1),频次最高的关键词是“ecosystem service”,频次为407次,其次是“management”“framework”“ biodiversity”“impact”等,频次均过百。其中,“ecosystem service”“management”和“impact”的中心性均高于0.1。对CNKI关键词共现图谱进行分析(图2-2),频次最高的关键词是“供需关系”,频次为41次,其次是“供需匹配”“生态红线”“权衡”“生态补偿”等词。其中,“权衡”的中心性最高,为0.29,其他关键词如“供需关系”“供需匹配”“生态补偿”“价值评估”“人类福祉”的中心性均高于0.1。

    图  2  ESs供需研究关键词共现图谱    2-1 WoS 核心合集关键词共现图谱    2-2 CNKI 数据库关键词共现图谱
    Figure  2.  Keyword co-occurrence map of the research on ESs supply and demand    2-1 Keyword co-occurrence map of WoS Core Collection    2-2 Keyword co-occurrence map of CNKI database

    由此可见,供需关系、管理决策、量化评估和人类福祉是ESs供需研究的热点。其中,量化评估和供需关系作为两大议题,旨在探明ESs供需机理;管理决策作为高频关键词出现,意味着ESs供需机理研究成果正应用于生态规划,并成为重要决策依据;人类福祉则代表ESs供需研究的高阶目标,体现供需研究支撑经济高质量发展。

    分析外文时间线图谱可知,“cultural ecosystem services”“ecosystem services supply”“water balance”等基础关键词在2012年均已出现,并一直持续至2022年。2013年左右,“ecosystem service flow”获得广大学者关注。随着2015年“demand”作为高频词出现,ESs供需研究体系更为完善(图3)。由中文时间线图谱可知,2006年“价值评估”和“评估方法”聚类形成,涵盖空间匹配、供需平衡等热点。2007年“生态补偿”聚类开始形成,生态足迹成为热点研究。“驱动机制”聚类从2008年兴起一直持续到2021年,研究关注点从生态安全转向景观格局及优化决策。“需求”聚类在2010年受到重视,并与居民福祉结合,该研究热点持续至2022年(图4)。

    图  3  WoS核心合集中ESs供需研究关键词聚类时间线图谱
    Figure  3.  Keyword clustering timeline map of the research on ESs supply and demand of WoS Core Collection

    由此可知,早期研究热点主要为ESs、价值评估和土地利用,包括供需平衡、空间匹配、生态用地约束等;中期研究热点如生态补偿、驱动机制、ESs流,均聚焦于探讨供需关系,为后期实践研究提供了充分的机理基础;近年来,涵盖生态红线、EN、生态修复和人类福祉等的研究热点形成,意味着ESs供需机理成果正被广泛应用于生态实践。综上,研究热点的变化在研究内容层面上,是从概念解读、机理解析到实证分析、应用实践的过程;在研究目标层面上,是从科学机理揭示到实现生态安全,再到人类福祉提升目标的进阶。

    图  4  CNKI数据库聚类时间线图谱
    Figure  4.  Clustering timeline map of CNKI database

    ESs供需研究始于20世纪90年代对生态承载力[5]和ESs价值[6]的研究。ESs供给是ESs的源头,指生态系统为人类产生的各种惠益[7]。ESs需求是ESs的终点,被认为是生态系统提供的产品和服务的消费与利用[8]。ESs供给与需求共同构成了ESs从自然生态系统流向经济社会系统的复杂动态过程。

    针对ESs供给水平的量化,早期研究是将ESs进行货币化,通过市场替代法、价值当量法获取ESs价值[6, 9-10],为弥补价值法空间性的缺失和科学性的不足,后来有学者引入生态学原理,利用生态过程模型[11],从规模和空间上反映各项服务的真实供给水平。对于ESs需求水平的测度有2种方法。1)直接法:从个体出发,通过问卷形式或建立指标体系进行直接测度[12];2)间接法:通过人口密度、夜间灯光、人均指标等来表征需求水平[13]。在ESs供需关系判定的研究中,早期研究采用基于专家经验判别的评估矩阵法[14];近年来,研究倾向于选用数据空间叠置法[15]将供需量化结果进行空间化表达,或基于统计分析结果来构建耦合度指数、协调度指数[16]进行判定。

    ESs供需的影响因素包括自然生态因素和社会经济因素。其中,自然生态因素是影响ESs供给能力的关键,涵盖土地利用和自然条件两方面[17]。社会经济因素与人类活动有关[18],包括经济增长、产业结构、人口、城镇化等,影响着ESs需求水平[19]。同时,人类活动会干扰生态系统的组分、结构和过程,间接影响ESs供给功能[20]。由于社会经济发展导致自然生态环境发生变化,从而引发ESs供需关系改变[21],因此,自然生态和社会经济因素分别从供需双方影响ESs供需关系。

    GI、EN和ESP为现有生态规划中最主要的3种模式[22],三者的构建环节均基于景观生态学中“斑块—廊道—基质”理论发展而来。GI作为自然生命支撑系统,源斑块的提取是构建GI的关键;EN构建的关键是廊道识别,决定着生态系统结构稳定性和功能完整性;ESP作为维护区域生态安全的有效工具,判定生态安全等级是ESP研究的关键环节(表1)。

    表  1  3种生态模式的差异[23-27]
    Table  1.  Differences between the three ecological patterns[23-27]
    生态模式模式内涵构建方式构建关键点结构图示
    GI 由网络中心、连接廊道及小型场地组成的天然与人工化的绿色空间网络[23] 源斑块提取—阻力面构建—潜在廊道识别 源斑块提取、福祉提升 [23]
    EN 由生态节点、廊道、缓冲区和自然保护区组成的网络状景观[24] 枢纽中心识别—阻力面构建—廊道识别 廊道识别、EN系统性与连通性提升 [25]
    ESP 由生态系统的重要生态组分、斑块和廊道组成的空间格局[26-27] 源地识别—阻力面构建—廊道提取—判定ESP 生态安全等级判定
    下载: 导出CSV 
    | 显示表格

    指标体系法[7]是基于统计学方法对不同时空尺度下ESs供给、需求或供需数量关系进行定量分析与表达。早期研究往往单一考虑供给端或需求端来识别生态要素[28-32]。从供给端来看,有学者从某种特定的供给水平出发,如使用累积年径流和蓄水量指标确定与洪水相关的自然基础设施保护的优先领域[28];还有研究结合多种ESs供给指标识别GI破碎化程度高的景观斑块[29]。从需求端来看,大多数研究倾向于综合多源需求指标进行评估,如选取热岛调节、雨洪调节和景观美学等指标来反映ESs需求,提取ESs高需求区为GI优先改善区[30-32]。然而,单一考虑供给或需求指标缺乏对供需关系的综合考量,难以反映生态与经济社会系统的互动关系。对此,学者们开始从ESs供需结合的角度展开评估[33-35],并融入生态风险指标或生态敏感性指标,识别具有较高需求水平或敏感性的重要源斑块来构建ESP[36-38]。耦合其他生态理论方法的指标,能够促进ESs供需指标体系评估的多元化发展,有利于精确化要素识别结果。

    指数构建与评估法[7]是指通过构建或评估单一关系表征指数来归一化处理并多样化ESs供需指标。对此,有研究通过建立表征生态系统间关联程度的耦合度指数来评估多重ESs水平,进而识别生态空间优先级[39];另有研究提出使用能够体现生态系统或生态要素间协调状况好坏程度的协调度指数来识别生态要素[40]。然而,耦合度指数只能反映各生态系统间相互作用程度的大小,协调度指数只能表征各生态功能之间相互促进或制约的状况,二者对于ESs供需水平的测算缺一不可。因此,有学者通过系统构建耦合协调度模型来识别城市空间中潜在的ESs与GI供需不匹配的区域[16, 41]。该模型既能通过耦合度阐释若干子生态系统之间的相互关系,又能使用协调度对整个生态系统进行综合评价与研究,弥补了单一使用耦合度指数或协调度指数的不足。除此之外,还有学者基于供需平衡指数识别生态空间供需不匹配程度较高的区域,优先考虑在ESs供应严重不足的地区规划新的绿地要素,提升ESs供给能力[42],实现GI的可持续管理。

    空间叠图分析法是将ESs复杂的空间信息引入实际应用的重要工具[43],已被广泛应用于空间制图研究中,并成为后续空间管控分区研究的重要基础。大多数学者往往先分别测算ESs供给与需求,再将供需空间分布格局分别制图,如有研究对ESs额外需求进行量化评估与空间制图以识别GI优先实施区域[44]。对供需测算结果进行叠加,采用四象限图将结果划分象限进行供需匹配分析:第一至四象限分别代表高供给—高需求、低供给—高需求、低供给—低需求及高供给—低需求4种供需关系。基于4种供需关系,有研究提取ESs供大于求的区域作为重要生态组分进行优先保护,对低安全格局水平下的低供给区域进行生态系统功能的重点改善[26];还有研究叠加多种ESs供给图层来衡量ESs供需匹配情况,提取生态供给能力最高的区域作为生态源地备选区域,进而构建ESP[45]

    将现有ESs供需水平测度融入生态要素识别的3种途径进行优劣势分析(表2)。1)指标体系法能够全面系统地表征供需关系,指标选择灵活、应用范围广泛。但是不同学者对指标选取的标准各异,难以统一;而且指标繁杂,指标间存在相互作用关系。2)指数构建与评估法能够简洁清晰地表达供需关系,并能较好地反映ESs供需总体水平及动态变化。但它往往只能体现供需关系的某个单一方面,结果相对片面,需要多种指数组合表征。3)空间叠图分析法与传统使用统计学方法的供需定量化研究相比,具有显著的空间特征,能够将ESs供需关系进行空间量化表达,从而体现空间异质性,有助于实现生态空间精细化管理。

    表  2  基于ESs供需水平测度的生态要素识别途径比较[7-8, 11, 15-16, 18, 25, 28, 36-37, 43, 45-48]
    Table  2.  Comparison between the pathways for identification of ecological elements based on the measurement of ESs supply and demand level[7-8, 11, 15-16, 18, 25, 28, 36-37, 43, 45-48]
    识别途径途径描述优势劣势应用区域
    指标体系法 指标体系由体现ESs供需特征或需求特征相关的环境或生态因子共同组成[7] 能够全面系统地表征供需关系,指标选择灵活、应用范围广泛 指标选取主观性较强,指标繁杂、指标间存在相互作用关系 全球[28]、区域(如雄安新区[46]、长三角[8]、黄河流域[37])、市域(如杭州[18]、武汉[36]、深圳[45]
    指数构建与
    评估法
    通过构建或评估单一关系表征指数来归并多样化ESs供需指标。相关指数有耦合度指数、协调度指数、供需平衡指数[7] 能够简洁清晰地表达供需关系,较好地反映ESs供需间总体水平及动态变化 只能体现供需关系的某个单一方面,结果比较片面 区域(如闽三角[47]、长三角[8])、市域(如广州[16]、临沂[25]
    空间叠图分析法 将ESs供需时空格局进行叠加分析,形成供需关系图。具体通过四象限匹配法、Z-score标准化来实现[43] 能将ESs供需关系进行空间定量表达、利于生态分区管理的便捷和统一 无法准确获取特定ESs在空间上的供需匹配状况,且对于需求区制图的研究缺乏,亟待深化 全球、区域(如长三角[8]、厦漳泉地区[48])、市域(如武汉[36]、天津[15]、深圳[45])、县域(如山西平陆县[11]
    下载: 导出CSV 
    | 显示表格

    GI关注人在开放空间中的需求及所获得的惠益,GI源斑块的提取能够体现利益相关者的需求,是GI构建的关键。早期研究往往仅从生态供给角度来选定源斑块,导致GI服务出现严重供需不平衡矛盾[28-29]。因此,相关学者结合城市对GI的需求,在微观层面上设置雨水花园、雨水储存设施、设计屋顶绿化等来改善并恢复城市ESs供给水平;宏观层面则通过构建“节点—连接—网络”的绿色空间结构来解决供需不平衡问题[42, 49],实现城市间紧密的空间组织和功能联系。近年来,国内外学者以满足人类需求为出发点,在规划过程中考虑GI空间分布的公平性和连通性,确保GI的布局能够满足居民需求,不仅增强了自然生态系统与经济社会系统间的潜在关联,还提升了人居环境质量。如有研究考虑居民游憩活动需求,从供需空间匹配角度来优化GI布局[50-51]。还有研究关注具有较高细节水平的小尺度空间,融入居民需求来分析ESs供需关系,更能体现供需空间分异性,利于针对性地提出GI优化策略[52]

    廊道能够连接影响生态结构稳定性和功能完整性的关键空间斑块,决定着EN连通性与系统性的强弱,是EN构建的关键。基于ESs供需关系可分为3种生态廊道。1)供给斑块与供给斑块对接的生态廊道,如有学者将重要水资源供给源地与绿地资源供给源地进行连通,形成供—供自然生态廊道[46]。2)供给斑块与需求斑块对接的生态廊道,如有研究识别了以重要供给源地为中心的供—需生态廊道[53-54];还有研究识别了居民亲近自然的潜在供—需空间廊道,构建了ESs亲近网络[48],增强了EN连通性与系统性,保障生态系统整体性。3)需求斑块与需求斑块对接的生态廊道,如有学者将国家文化公园内的重点红色旅游资源点相互连接,形成了需—需红色旅游廊道,带动了国家文化公园的发展[55]

    判定ESP等级是将ESs供需理论与技术方法应用于ESP研究的关键,有助于维持区域生态安全。现有研究主要是通过量化ESs供需进行空间叠加分析,基于供需关系划分低、中、高3种生态安全等级。例如,有学者选用基本供给服务指标并融入居民游憩安全需求指标进行空间分析,将提供了最基本ESs的关键景观格局划为低安全水平区域,作为不可逾越的生态底线进行严格保护[47];还有学者融入生态敏感性因子,将极高敏感区与生态供给水平极低区作为低生态安全格局区,进行严格保护[37, 56]。综合两方面评价结果来划分生态安全等级,利于生态环境脆弱地区的生态环境保护与可持续发展。基于此,有研究引入ESs稀缺性理论,即ESs失衡越严重,保护的优先级越高,在低供给—高需求的地区适当分配重点保护区域,优先保护严重供需失衡的区域[57]

    国土空间规划的宏、中观层面分别对应国家和省级尺度的功能分区与总体规划,根据“双评价”结果划定管控边界线并设定生态修复分区。对于“三线”中的生态保护红线,有研究基于ESs网络理论识别具有水源涵养、水土保持、生物多样性保护等重要ESs供给功能的区域[58],并考虑利益相关方的基本生态需求,划定严格生态保护空间;对于永久基本农田保护红线,有研究针对粮食供给这一特定ESs,通过建立决策指标体系划定农业生产空间,并结合人类生产活动需求明确农牧产业发展的适宜空间和禁止空间[59];而对于城镇开发边界的划定,有学者基于市民的需求,通过平衡人居供给与城市人均生态用地需求而明确城镇适宜规划建设空间[60],引导城市有序开发。结合“三线”划定结果,开展国土空间生态修复分区研究可以为国土整治与生态修复具体工程项目布局提供空间指引。基于ESs供需平衡分析,大多数研究将高供给—低需求区划分为生态重点保育区,将低供给—低需求区域划分为生态综合提升区,将低供给—高需求区划分为生态重点修复区,将高供给—高需求区划分为生态预防治理区[61-62]

    国土空间规划体系下的详细规划以落实总体规划意图、指导生态规划管理为主,通过协调ESs供需关系开展生态工程、景观风貌提升和低影响开发等具体设计。1)针对生态工程,有研究建议采用山体覆绿、乡土树种补植、土壤改良等措施用于矿山生态修复工程[63],并协调社会经济发展需求,适当利用生态空间,实现综合发展。2)在景观风貌提升方面,有研究关注城市河流景观提升[64],考虑公众意愿,从调节、支持、文化3种服务类型出发,采取不同的供需匹配设计策略:对于供需基本平衡的河段,以完善雨污分流、雨水收集与污水净化为主要措施,提升河流廊道的稳定性;对于供给显著小于需求的河段,则通过增强与周边绿地的衔接的方式形成滨河绿色网络。3)在低影响开发方面,有研究聚焦于海绵城市建设,通过协调城市开发建设需求与绿色空间ESs供给之间的关系,合理建设下沉式绿地、屋顶绿化、透水铺装等设施提高城市雨洪调蓄能力[65],缓解因城市地表径流增加而导致的内涝风险。

    不同类型的国土生态空间承载着不同的ESs,针对生态空间特定要素主导的ESs功能,通过权衡其ESs供需关系展开专项规划研究。针对水体要素,以洪涝调节、雨洪管理等水生态系统调节服务为主要措施进行水环境规划[66],需要考虑水资源供给与用水需求的平衡,对河湖水系展开系统性、整体性规划。针对绿地要素,强调生态系统文化服务供给,在进行绿地系统规划编制时,应重视绿地ESs供给能力与居民需求之间匹配程度的考量[67-69],以实现绿地的合理布局。针对森林要素,强调森林生态系统的土壤保持服务与固碳释氧服务[70],通过平衡林地资源供给与城市开发建设需求之间的关系来进行森林规划。针对生态系统的安全性要素,以水源涵养、生态安全、灾害防护等与区域自然灾害能力高度相关的ESs为核心,权衡人类安全基本需求,进行防灾规划[71]

    笔者通过CiteSpace对国内外2000—2022年的ESs供需研究关键词及其聚类进行文献计量分析,梳理ESs供需基础理论,并以生态规划为导向,对ESs供需应用领域进行系统性分析,据此指出现有研究的不足及发展方向,得出如下3个方面的主要结论。

    1)ESs供需研究无论是基础研究还是应用实践均取得了显著成果,是从基础研究到应用实践的探索过程,且对于生态规划实践具有针对性。以生态规划的“识别—构建—管控”为路径将ESs供需机理成果应用于实践研究,能够解决传统生态规划中生态资源供需不匹配、生态保护目标不明确等问题。

    2)GI、EN、ESP是现有生态规划中最主要的3种模式,对于ESs供需量化方法纳入生态要素识别的研究,主要有指标体系法、指数构建与评估法和空间叠图分析法,3种方法分别对不同情形、不同尺度具有适用性。ESs供需关系判定对于模式构建具有针对性,其中GI构建侧重源斑块的选取,EN构建偏向于廊道网络连通性建设,ESP构建则侧重安全等级的判定。

    3)在面向ESs供需优化的国土生态空间管控实践中,已有研究从国土空间的不同层级展开探讨:宏、中观层面重在划定管控边界线和国土生态修复分区,并凭借微观层面的详细规划设计落实生态分区结果;在专项层面,针对生态空间特定要素承载的ESs功能展开合理规划,强化空间用途管制。

    因此,未来基于ESs供需理论的实践研究可聚焦于以下三大方面。

    1)现有ESs供需水平测算有待集成多学科技术方法。未来可通过对ESs评估模型进行定向开发与系统集成,优势互补,实现对多类服务供需的综合评估。还可通过综合经济学、地理学、计算机科学等多学科领域知识与方法,实现ESs供需对要素识别定量研究的多元发展。

    2)生态规划模式从考量静态供需关系向体现动态ESs供需流转变。传统生态模式主要基于用地本身功能重要性、环境适宜性等静态评价,缺乏对生态过程的动态评估,未来可通过“供给—流动—需求”的理论框架来构建适应本土地域特征的规划模式,促进现有模式的动态化、科学化发展,也可结合ESs供需流来探讨现有模式应用于其他生态规划实践所造成的影响。

    3)由单一政策工具到系统化的政策工具体系构建。在当前国土空间体系下,生态空间管控研究正向着愈加注重综合性、多元性和系统性的方向发展,基于ESs供需构建相关政策工具,能够调控和指导决策者的行为,影响生态系统的结构、过程、功能和服务。目前ESs供需对于政策实施性的研究较为薄弱,未来应加强研究与管控政策措施间的全面有效结合。

    注释:
    图表来源(Sources of Figures and Tables):
    文中所有图表均由作者绘制,其中表1中部分图示引自参考文献[23][25]。
  • 图  1   ESs供需研究融入生态规划实践的路径示意

    Figure  1.   Schematic diagram of the pathway for integrating the research on ESs supply and demand into ecological planning practice

    图  2   ESs供需研究关键词共现图谱    2-1 WoS 核心合集关键词共现图谱    2-2 CNKI 数据库关键词共现图谱

    Figure  2.   Keyword co-occurrence map of the research on ESs supply and demand    2-1 Keyword co-occurrence map of WoS Core Collection    2-2 Keyword co-occurrence map of CNKI database

    图  3   WoS核心合集中ESs供需研究关键词聚类时间线图谱

    Figure  3.   Keyword clustering timeline map of the research on ESs supply and demand of WoS Core Collection

    图  4   CNKI数据库聚类时间线图谱

    Figure  4.   Clustering timeline map of CNKI database

    表  1   3种生态模式的差异[23-27]

    Table  1   Differences between the three ecological patterns[23-27]

    生态模式模式内涵构建方式构建关键点结构图示
    GI 由网络中心、连接廊道及小型场地组成的天然与人工化的绿色空间网络[23] 源斑块提取—阻力面构建—潜在廊道识别 源斑块提取、福祉提升 [23]
    EN 由生态节点、廊道、缓冲区和自然保护区组成的网络状景观[24] 枢纽中心识别—阻力面构建—廊道识别 廊道识别、EN系统性与连通性提升 [25]
    ESP 由生态系统的重要生态组分、斑块和廊道组成的空间格局[26-27] 源地识别—阻力面构建—廊道提取—判定ESP 生态安全等级判定
    下载: 导出CSV

    表  2   基于ESs供需水平测度的生态要素识别途径比较[7-8, 11, 15-16, 18, 25, 28, 36-37, 43, 45-48]

    Table  2   Comparison between the pathways for identification of ecological elements based on the measurement of ESs supply and demand level[7-8, 11, 15-16, 18, 25, 28, 36-37, 43, 45-48]

    识别途径途径描述优势劣势应用区域
    指标体系法 指标体系由体现ESs供需特征或需求特征相关的环境或生态因子共同组成[7] 能够全面系统地表征供需关系,指标选择灵活、应用范围广泛 指标选取主观性较强,指标繁杂、指标间存在相互作用关系 全球[28]、区域(如雄安新区[46]、长三角[8]、黄河流域[37])、市域(如杭州[18]、武汉[36]、深圳[45]
    指数构建与
    评估法
    通过构建或评估单一关系表征指数来归并多样化ESs供需指标。相关指数有耦合度指数、协调度指数、供需平衡指数[7] 能够简洁清晰地表达供需关系,较好地反映ESs供需间总体水平及动态变化 只能体现供需关系的某个单一方面,结果比较片面 区域(如闽三角[47]、长三角[8])、市域(如广州[16]、临沂[25]
    空间叠图分析法 将ESs供需时空格局进行叠加分析,形成供需关系图。具体通过四象限匹配法、Z-score标准化来实现[43] 能将ESs供需关系进行空间定量表达、利于生态分区管理的便捷和统一 无法准确获取特定ESs在空间上的供需匹配状况,且对于需求区制图的研究缺乏,亟待深化 全球、区域(如长三角[8]、厦漳泉地区[48])、市域(如武汉[36]、天津[15]、深圳[45])、县域(如山西平陆县[11]
    下载: 导出CSV
  • [1]

    COSTANZA R, DE GROOT R, SUTTON P, et al. Changes in the Global Value of Ecosystem Services[J]. Global Environmental Change, 2014, 26: 152-158. doi: 10.1016/j.gloenvcha.2014.04.002

    [2] 邱坚坚,刘毅华,袁利,等.人地系统耦合下生态系统服务与人类福祉关系研究进展与展望[J].地理科学进展,2021,40(6):1060-1072. doi: 10.18306/dlkxjz.2021.06.015

    QIU J J, LIU Y H, YUAN L, et al. Research Progress and Prospect of the Interrelationship Between Ecosystem Services and Human Well-Being in the Context of Coupled Human and Natural System[J]. Progress in Geography, 2021, 40 (6): 1060-1072. doi: 10.18306/dlkxjz.2021.06.015

    [3] 何璇,毛惠萍,牛冬杰,等.生态规划及其相关概念演变和关系辨析[J].应用生态学报,2013,24(8):2360-2368.

    HE X, MAO H P, NIU D J, et al. Evolution and Discrimination of Ecological Planning and Its Related Conceptions[J]. Chinese Journal of Applied Ecology, 2013, 24 (8): 2360-2368.

    [4]

    WEI H J, FAN W G, WANG X C, et al. Integrating Supply and Social Demand in Ecosystem Services Assessment: A Review[J]. Ecosystem Services, 2017, 25: 15-27. doi: 10.1016/j.ecoser.2017.03.017

    [5]

    REES W E. Ecological Footprints and Appropriated Carrying Capacity: What Urban Economics Leaves Out[J]. Environment & Urbanization, 1992, 4 (2): 121-130.

    [6]

    COSTANZA R, D’ARGE R, DE GROOT R, et al. The Value of the World’s Ecosystem Services and Natural Capital[J]. Nature, 1997, 387 (6630): 253-260. doi: 10.1038/387253a0

    [7] 申嘉澍,李双成,梁泽,等.生态系统服务供需关系研究进展与趋势展望[J].自然资源学报,2021,36(8):1909-1922. doi: 10.31497/zrzyxb.20210801

    SHEN J S, LI S C, LIANG Z, et al. Research Progress and Prospect for the Relationships Between Ecosystem Services Supplies and Demands[J]. Journal of Natural Resources, 2021, 36 (8): 1909-1922. doi: 10.31497/zrzyxb.20210801

    [8]

    ZHAO C, XIAO P, QIAN P, et al. Spatiotemporal Differentiation and Balance Pattern of Ecosystem Service Supply and Demand in the Yangtze River Economic Belt[J]. International Journal of Environmental Research and Public Health, 2022, 19 (12): 7223. doi: 10.3390/ijerph19127223

    [9]

    CHAIGNEAU T, BROWN K, COULTHARD S, et al. Money, Use and Experience: Identifying the Mechanisms Through Which Ecosystem Services Contribute to Wellbeing in Coastal Kenya and Mozambique[J]. Ecosystem Services, 2019, 38: 100957. doi: 10.1016/j.ecoser.2019.100957

    [10]

    SCHROTER M, REMME R P, SUMARGA E, et al. Lessons Learned for Spatial Modelling of Ecosystem Services in Support of Ecosystem Accounting[J]. Ecosystem Services, 2015, 13: 64-69. doi: 10.1016/j.ecoser.2014.07.003

    [11] 杨丽雯,王大勇,李双成.生态系统文化服务供需关系量化方法研究:以平陆大天鹅景区为例[J].北京大学学报(自然科学版),2021,57(4):691-698.

    YANG L W, WANG D Y, LI S C. Quantitative Assessment on Supply-Demand Budget of Culture Ecosystem Service: A Case Study in Pinglu Swan Scenic Spot[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57 (4): 691-698.

    [12]

    HANNA D E L, ROUX D J, CURRIE B, et al. Identifying Pathways to Reduce Discrepancies Between Desired and Provided Ecosystem Services[J]. Ecosystem Services, 2020, 43: 101119.

    [13]

    WANG J, ZHAI T L, LIN Y F, et al. Spatial Imbalance and Changes in Supply and Demand of Ecosystem Services in China[J]. Science of the Total Environment, 2019, 657: 781-791. doi: 10.1016/j.scitotenv.2018.12.080

    [14]

    BURKHARD B, KROLL F, MULLER F. Landscapes’ Capacities to Provide Ecosystem Services: A Concept for Land-Cover Based Assessments[J]. Landscape Online, 2009, 15: 1-22. doi: 10.3097/LO.200915

    [15] 蒋飞阳,田健,那麦提,等.应对暴雨洪涝灾害的平原城市生态水文调节服务供需评估:以天津市为例[J].生态学报,2023,43(12):4928-4942.

    JIANG F Y, TIAN J, NMT A, et al. Assessment of the Supply-Demand Relationship of Plain Urban Eco-hydrological Regulation Service in Response to Rainstorm-Flood Disaster: A Case Study of Tianjin City[J]. Acta Ecologica Sinica, 2023, 43 (12): 4928-4942.

    [16]

    WANG M, CHEN F R, ZHANG D Q, et al. Supply-Demand Evaluation of Green Stormwater Infrastructure (GSI) Based on the Model of Coupling Coordination[J]. International Journal of Environmental Research and Public Health, 2022, 19 (22): 14742. doi: 10.3390/ijerph192214742

    [17]

    LANG Y, SONG W. Quantifying and Mapping the Responses of Selected Ecosystem Services to Projected Land Use Changes[J]. Ecological Indicators, 2019, 102: 186-198. doi: 10.1016/j.ecolind.2019.02.019

    [18]

    ZHOU M, DENG J, LIN Y, et al. Evaluating Combined Effects of Socio-economic Development and Ecological Conservation Policies on Sediment Retention Service in the Qiantang River Basin, China[J]. Journal of Cleaner Production, 2021, 286: 124961. doi: 10.1016/j.jclepro.2020.124961

    [19]

    RETALLACK M. The Intersection of Economic Demand for Ecosystem Services and Public Policy: A Watershed Case Study Exploring Implications for Social-Ecological Resilience[J]. Ecosystem Services, 2021, 50: 101322. doi: 10.1016/j.ecoser.2021.101322

    [20]

    XU Z H, PENG J, DONG J Q, et al. Spatial Correlation Between the Changes of Ecosystem Service Supply and Demand: An Ecological Zoning Approach[J]. Landscape and Urban Planning, 2022, 217: 104258. doi: 10.1016/j.landurbplan.2021.104258

    [21]

    XIN L, SHI Q D, XIAO D M. Mechanism Analysis of Ecosystem Services (ESs) Changes Under the Proposed Supply-Demand Framework: A Case Study of Jiangsu Province, China[J]. Ecological Indicators, 2022, 144: 109572. doi: 10.1016/j.ecolind.2022.109572

    [22] 常青,苏王新,王宏.景观生态学在风景园林领域应用的研究进展[J].应用生态学报,2019,30(11):3991-4002.

    CHANG Q, SU W X, WANG H. Research Progress on Application of Landscape Ecology in Landscape Architecture[J]. Chinese Journal of Applied Ecology, 2019, 30 (11): 3991-4002.

    [23] 宗敏丽.城市绿色基础设施网络构建与规划模式研究[J].上海城市规划,2015(3):104-109.

    ZONG M L. A Study of Urban Green Infrastructure Network Construction and Planning Pattern[J]. Shanghai Urban Planning Review, 2015 (3): 104-109.

    [24] 曹祺文,黄晓春,阳文锐,等.国土生态空间规划决策支持框架体系研究[J].城市发展研究,2022,29(10):40-49.

    CAO Q W, HUANG X C, YANG W R, et al. Research on the Decision Support Framework System of Territorial Ecological Spatial Planning[J]. Urban Development Studies, 2022, 29 (10): 40-49.

    [25] 王晨旭,刘焱序,于超月,等.面向居民生态福祉的国土空间生态网络构建:以临沂市为例[J].生态学报,2022,42(21):8650-8663.

    WANG C X, LIU Y X, YU C Y, et al. Construction of Terrestrial Ecological Network for the Improvement of Residents’ Ecological Benefits: A Case Study of Linyi City[J]. Acta Ecologica Sinica, 2022, 42 (21): 8650-8663.

    [26]

    KANG J M, ZHANG X, ZHU X W, et al. Ecological Security Pattern: A New Idea for Balancing Regional Development and Ecological Protection. A Case Study of the Jiaodong Peninsula, China[J]. Global Ecology and Conservation, 2021, 26: 2351-9894.

    [27] 陈昕,彭建,刘焱序,等.基于“重要性—敏感性—连通性”框架的云浮市生态安全格局构建[J].地理研究,2017,36(3):471-484.

    CHEN X, PENG J, LIU Y X, et al. Constructing Ecological Security Patterns in Yunfu City Based on the Framework of Importance-Sensitivity-Connectivity[J]. Geographical Research, 2017, 36 (3): 471-484.

    [28]

    KELLY G, MARK M, ROBERT A F, et al. Evaluating Natural Infrastructure for Flood Management Within the Watersheds of Selected Global Cities[J]. Science of the Total Environment, 2019, 670: 411-424. doi: 10.1016/j.scitotenv.2019.03.212

    [29] 吴晓,周忠学.城市绿色基础设施生态系统服务供给与需求的空间关系:以西安市为例[J].生态学报,2019,39(24):9211-9221.

    WU X, ZHOU Z X. Spatial Relationship Between Supply and Demand of Ecosystem Services Through Urban Green Infrastructure: Case of Xi’an City[J]. Acta Ecologica Sinica, 2019, 39 (24): 9211-9221.

    [30] 许超,孟楠,逯非,等.生态系统服务需求视角下的澳门城市绿色基础设施管理研究[J].中国园林,2020,36(9):104-109.

    XU C, MENG N, LU F, et al. Research on Urban Green Infrastructure Management in Macao from the Perspective of Ecosystem Service Demand[J]. Chinese Landscape Architecture, 2020, 36 (9): 104-109.

    [31] 顾康康,程帆,杨倩倩.基于GISP模型的城市绿色基础设施多功能性评估[J].生态学报,2018,38(19):7113-7119.

    GU K K, CHENG F, YANG Q Q. Analysis of Multifunctional Urban Green Infrastructure Using a GISP Model[J]. Acta Ecologica Sinica, 2018, 38 (19): 7113-7119.

    [32]

    HOERBINGER S, IMMITZER M, OBRIEJETAN M, et al. GIS-Based Assessment of Ecosystem Service Demand Concerning Green Infrastructure Line-Side Vegetation[J]. Ecological Engineering, 2018, 121: 114-123. doi: 10.1016/j.ecoleng.2017.06.030

    [33]

    FRANCESC B, DAGMAR H, ERIK G B, et al. Mismatches Between Ecosystem Services Supply and Demand in Urban Areas: A Quantitative Assessment in Five European Cities[J]. Ecological Indicators, 2015, 55: 146-158. doi: 10.1016/j.ecolind.2015.03.013

    [34] 申佳可,王云才.景观生态网络规划:由空间结构优先转向生态系统服务提升的生态空间体系构建[J].风景园林,2020,27(10):37-42.

    SHEN J K, WANG Y C. Landscape Ecological Network Planning: Ecological Spaces System Building from Spatial Structural Priority to Ecosystem Services Improvement[J]. Landscape Architecture, 2020, 27 (10): 37-42.

    [35] 刘维,周忠学,郎睿婷.城市绿色基础设施生态系统服务供需关系及空间优化:以西安市为例[J].干旱区地理,2021,44(5):1500-1513. doi: 10.12118/j.issn.10006060.2021.05.30

    LIU W, ZHOU Z X, LANG R T. Supply-Demand Relations of Ecosystem Services of Urban Green Infrastructure and Its Spatial Optimization: A Case of Xi’an City[J]. Arid Land Geography, 2021, 44 (5): 1500-1513. doi: 10.12118/j.issn.10006060.2021.05.30

    [36] 黄隆杨,刘胜华,方莹,等.基于“质量—风险—需求”框架的武汉市生态安全格局构建[J].应用生态学报,2019,30(2):615-626.

    HUANG L Y, LIU S H, FANG Y, et al. Construction of Wuhan’s Ecological Security Pattern Under the “Quality-Risk-Requirement” Framework[J]. Chinese Journal of Applied Ecology, 2019, 30 (2): 615-626.

    [37]

    ZHANG Y L, ZHAO Z Y, FU B J, et al. Identifying Ecological Security Patterns Based on the Supply, Demand and Sensitivity of Ecosystem Service: A Case Study in the Yellow River Basin, China[J]. Journal of Environmental Management, 2022, 315: 115158. doi: 10.1016/j.jenvman.2022.115158

    [38] 兰亦阳,来昕,郑曦.基于生态源地与生态廊道优先级评估的生态安全格局构建与优化:以石家庄都市区为例[J].风景园林,2023,30(2):131-138. doi: 10.12409/j.fjyl.202104290271

    LAN Y Y, LAI X, ZHENG X. Construction and Optimization of Ecological Security Pattern Based on Priority Assessment of Ecological Source and Ecological Corridor: A Case Study of Shijiazhuang Metropolitan Area[J]. Landscape Architecture, 2023, 30 (2): 131-138. doi: 10.12409/j.fjyl.202104290271

    [39]

    SHEN J, GUO X, WANG Y. Identifying and Setting the Natural Spaces Priority Based on the Multi-ecosystem Services Capacity Index[J]. Ecological Indicators, 2021, 125: 107473. doi: 10.1016/j.ecolind.2021.107473

    [40]

    YANG Y, CAI Z. Ecological Security Assessment of the Guanzhong Plain Urban Agglomeration Based on an Adapted Ecological Footprint Model[J]. Journal of Cleaner Production, 2020, 260: 120973. doi: 10.1016/j.jclepro.2020.120973

    [41]

    DING T, FANG L, CHEN J, et al. Exploring the Relationship Between Water-Energy-Food Nexus Sustainability and Multiple Ecosystem Services at the Urban Agglomeration Scale[J]. Sustainable Production and Consumption, 2023, 35: 184-200. doi: 10.1016/j.spc.2022.10.028

    [42]

    DEMANUEL B F, FERNANDEZ L M, PENA L, et al. A New Indicator of the Effectiveness of Urban Green Infrastructure Based on Ecosystem Services Assessment[J]. Basic and Applied Ecology, 2021, 53: 12-25. doi: 10.1016/j.baae.2021.02.012

    [43]

    GIUSEPPE P, FRANCESCO F, FLAVIO L. Insights and Opportunities from Mapping Ecosystem Services of Urban Green Spaces and Potentials in Planning[J]. Ecosystem Services, 2016, 22: 1-10. doi: 10.1016/j.ecoser.2016.09.004

    [44]

    WANG D, HU Y, TANG P, et al. Identification of Priority Implementation Areas and Configuration Types for Green Infrastructure Based on Ecosystem Service Demands in Metropolitan City[J]. International Journal of Environmental Research and Public Health, 2022, 19: 8191. doi: 10.3390/ijerph19138191

    [45] 赵宇豪,罗宇航,易腾云,等.基于生态系统服务供需匹配的深圳市生态安全格局构建[J].应用生态学报,2022,33(9):2475-2484.

    ZHAO Y H, LUO Y H, YI T Y, et al. Constructing an Ecological Security Pattern in Shenzhen, China, by Matching the Supply and Demand of Ecosystem Services[J]. Chinese Journal of Applied Ecology, 2022, 33 (9): 2475-2484.

    [46] 荣月静,严岩,王辰星,等.基于生态系统服务供需的雄安新区生态网络构建与优化[J].生态学报,2020,40(20):7197-7206.

    RONG Y J, YAN Y, WANG C X, et al. Construction and Optimization of Ecological Network in Xiong’an New Area Based on the Supply and Demand of Ecosystem Services[J]. Acta Ecologica Sinica, 2020, 40 (20): 7197-7206.

    [47] 刘晓阳,曾坚,贾梦圆,等.闽三角城市群生态安全格局构建及城镇扩展模拟[J].生态学报,2020,40(21):7873-7885.

    LIU X Y, ZENG J, JIA M Y, et al. Construction of Ecological Security Pattern and Simulation of Urban Sprawl in the Urban Agglomeration of Min Delta[J]. Acta Ecologica Sinica, 2020, 40 (21): 7873-7885.

    [48] 胡其玉,陈松林.基于生态系统服务供需的厦漳泉地区生态网络空间优化[J].自然资源学报,2021,36(2):342-355. doi: 10.31497/zrzyxb.20210206

    HU Q Y, CHEN S L. Optimizing the Ecological Networks Based on the Supply and Demand of Ecosystem Services in Xiamen-Zhangzhou-Quanzhou Region[J]. Journal of Natural Resources, 2021, 36 (2): 342-355. doi: 10.31497/zrzyxb.20210206

    [49]

    URETA J, MOTALLEBI M, SCARONI A E, et al. Understanding the Public’s Behavior in Adopting Green Stormwater Infrastructure[J]. Sustainable Cities and Society, 2021, 69: 102815. doi: 10.1016/j.scs.2021.102815

    [50] 肖华斌,盛硕,安淇,等.供给—需求匹配视角下城市绿色基础设施空间分异识别及优化策略研究:以济南西部新城为例[J].中国园林,2019,35(11):65-69.

    XIAO H B, SHENG S, AN Q, et al. Research on the Identification of Urban Green Infrastructure Supply-Demand Spatial Differentiation and Optimization Strategies: A Case Study on Jinan West New District[J]. Chinese Landscape Architecture, 2019, 35 (11): 65-69.

    [51]

    MAO Q Z, WANG L Y, GUO Q H, et al. Evaluating Cultural Ecosystem Services of Urban Residential Green Spaces from the Perspective of Residents Satisfaction with Green Space[J]. Frontiers in Public Health, 2020, 8: 226. doi: 10.3389/fpubh.2020.00226

    [52] 贾佳,吴雪飞.基于生态系统服务供需评估的街道尺度GI调适[J].现代城市研究,2020(4):106-113. doi: 10.3969/j.issn.1009-6000.2020.04.015

    JIA J, WU X F. Street Scale GI Optimization Based on Ecosystem Service Supply and Demand Assessment[J]. Modern Urban Research, 2020 (4): 106-113. doi: 10.3969/j.issn.1009-6000.2020.04.015

    [53]

    WANG Y C, SHEN J K, XIANG W N. Ecosystem Service of Green Infrastructure for Adaptation to Urban Growth: Function and Configuration[J]. Ecosystem Health and Sustainability, 2018, 4 (5): 132-143. doi: 10.1080/20964129.2018.1474721

    [54] 倪畅,周凯,郑曦.基于景观生态风险评价的景观格局优化:以北京市浅山区为例[J].风景园林,2021,28(5):80-85.

    NI C, ZHOU K, ZHENG X. Landscape Pattern Optimization Based on Landscape Ecological Risk Assessment: A Case Study of Shallow Mountain Area in Beijing[J]. Landscape Architecture, 2021, 28 (5): 80-85.

    [55] 李磊,陶卓民,赖志城,等.长征国家文化公园红色旅游资源网络关注度及其旅游流网络结构分析[J].自然资源学报,2021,36(7):1811-1824. doi: 10.31497/zrzyxb.20210713

    LI L, TAO Z M, LAI Z C, et al. Analysis of the Internet Attention and Tourism Flow Network Structure of Red Tourism Resources in Long March National Cultural Park[J]. Journal of Natural Resources, 2021, 36 (7): 1811-1824. doi: 10.31497/zrzyxb.20210713

    [56] 陈瑶瑶,罗志军,齐松,等.基于生态敏感性与生态网络的南昌市生态安全格局构建[J].水土保持研究,2021,28(4):342-349.

    CHEN Y Y, LUO Z J, QI S, et al. Ecological Security Pattern Construction of Nanchang City Based on Ecological Sensitivity and Ecological Network[J]. Research of Soil and Water Conservation, 2021, 28 (4): 342-349.

    [57]

    JIA Q Q, JIAO L M, LIAN X H, et al. Linking Supply-Demand Balance of Ecosystem Services to Identify Ecological Security Patterns in Urban Agglomerations[J]. Sustainable Cities and Society, 2023, 92: 104497. doi: 10.1016/j.scs.2023.104497

    [58] 范玉龙,赵天英,丁圣彦.基于“生态系统服务网”理论的国土空间规划研究[J].生态学报,2023,43(12):4868-4875.

    FAN Y L, ZHAO T Y, DING S Y. Research on Territorial Spatial Planning Based on the Theory of Ecosystem Service Network[J]. Acta Ecologica Sinica, 2023, 43 (12): 4868-4875.

    [59] 陈文广,张青璞,孔祥斌,等.基于“三线”统筹的省域永久基本农田布局优化规则与实证研究[J].农业工程学报,2021,37(15):248-257. doi: 10.11975/j.issn.1002-6819.2021.15.030

    CHEN W G, ZHANG Q P, KONG X B, et al. Optimizing Rules and Empirical Research of Provincial Permanent Basic Farmland Layout Based on the “Three-Line” Coordination[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (15): 248-257. doi: 10.11975/j.issn.1002-6819.2021.15.030

    [60] 王晨跃,叶裕民,范梦雪.论城镇开发边界划定与管理的三大关系:基于“城市人”理论的理念辨析[J].城市规划学刊,2021(1):28-35.

    WANG C Y, YE Y M, FAN M X. The Three Relations in UGB Delimitation and Governance: An Analysis Based on the Theory of “Homo-Urbanicus”[J]. Urban Planning Forum, 2021 (1): 28-35.

    [61] 周汝波,林媚珍,吴卓.生态系统服务供需视角下粤港澳大湾区国土空间生态修复分区研究[J].热带地理,2023,43(3):417-428.

    ZHOU R B, LIN M Z, WU Z. Land Space Ecological Restoration Zoning in Guangdong − Hong Kong − Macao Bay Area from the Perspective of Supply and Demand of Ecosystem Services[J]. Tropical Geography, 2023, 43 (3): 417-428.

    [62] 倪庆琳,侯湖平,丁忠义,等.基于生态安全格局识别的国土空间生态修复分区:以徐州市贾汪区为例[J].自然资源学报,2020,35(1):204-216. doi: 10.31497/zrzyxb.20200117

    NI Q L, HOU H P, DING Z Y, et al. Ecological Remediation Zoning of Territory Based on the Ecological Security Pattern Recognition: Taking Jiawang District of Xuzhou City as an Example[J]. Journal of Natural Resources, 2020, 35 (1): 204-216. doi: 10.31497/zrzyxb.20200117

    [63] 王琪,王存颂.国土空间详细规划层级中生态空间管控与保护修复的思路探讨[J].现代城市研究,2022(9):118-125. doi: 10.3969/j.issn.1009-6000.2022.09.018

    WANG Q, WANG C S. Research on Ecological Spatial Control and Restoration Based on the Level of Detailed Territorial Spatial Planning[J]. Modern Urban Research, 2022 (9): 118-125. doi: 10.3969/j.issn.1009-6000.2022.09.018

    [64] 姜芊孜,王广兴,李金煜.基于生态系统服务供需评价的城市河流景观提升策略[J].中国城市林业,2021,19(2):73-79. doi: 10.12169/zgcsly.2020.08.23.0001

    JIANG Q Z, WANG G X, LI J Y. Urban River Landscape Enhancement Strategy Based on Ecosystem Services Supply and Demand Evaluation[J]. Journal of Chinese Urban Forestry, 2021, 19 (2): 73-79. doi: 10.12169/zgcsly.2020.08.23.0001

    [65] 戴忱,姚秀利,陈凌.海绵城市建设融入国土空间规划体系的路径与方法研究[J].现代城市研究,2021(1):72-78. doi: 10.3969/j.issn.1009-6000.2021.01.011

    DAI C, YAO X L, CHEN L. A Study on the Path and Method of Integrating Sponge City Construction into Territorial Spatial Planning System[J]. Modern Urban Research, 2021 (1): 72-78. doi: 10.3969/j.issn.1009-6000.2021.01.011

    [66] 李念春,周建伟,万金彪,等.基于对数承载率模型的东营市水环境承载力评价[J].地质科技情报,2018,37(3):219-225.

    LI N C, ZHOU J W, WAN J B, et al. Evaluation of Water Environment Carrying Capacity in Dongying City Based on Logarithmic Carrying Capacity Ratio Model[J]. Geological Science and Technology Information, 2018, 37 (3): 219-225.

    [67] 金涛,刘俊,赵征,等.国土空间规划背景下绿地系统专项规划编制路径[J].规划师,2021,37(23):12-16. doi: 10.3969/j.issn.1006-0022.2021.23.002

    JIN T, LIU J, ZHAO Z, et al. Green System Planning Compilation Path in Territorial Space Planning[J]. Planners, 2021, 37 (23): 12-16. doi: 10.3969/j.issn.1006-0022.2021.23.002

    [68] 张云路,马嘉,李雄.面向新时代国土空间规划的城乡绿地系统规划与管控路径探索[J].风景园林,2020,27(1):25-29.

    ZHANG Y L, MA J, LI X. Exploration on Planning and Control Paths of Urban-Rural Green Space System for National Territory Spatial Planning in the New Era[J]. Landscape Architecture, 2020, 27 (1): 25-29.

    [69] 刘颂,杨莹,颜文涛.基于生态系统文化服务供需平衡的公园绿地配置研究框架[J].中国城市林业,2021,19(3):14-18. doi: 10.12169/zgcsly.2020.11.03.0002

    LIU S, YANG Y, YAN W T. Research Framework of Green Space Allocation in Parks Based on Cultural Ecosystem Services Supply-Demand Balance[J]. Journal of Chinese Urban Forestry, 2021, 19 (3): 14-18. doi: 10.12169/zgcsly.2020.11.03.0002

    [70] 欧朝蓉,孙永玉,邓志华,等.森林生态系统服务权衡:认知、方法和驱动[J].中国水土保持科学,2020,18(4):150-160.

    OU Z R, SUN Y Y, DENG Z H, et al. Trade-Offs in Forest Ecosystem Services: Cognition, Approach and Driving[J]. Science of Soil and Water Conservation, 2020, 18 (4): 150-160.

    [71] 许萌,董潇楠,谢苗苗,等.基于承灾脆弱性与生态系统服务供需匹配的城市空间治理分区[J].生态学报,2021,41(15):6012-6023.

    XU M, DONG X N, XIE M M, et al. Zoning for Urban Space Governance Based on the Disaster Vulnerability and Supply-Demand Match of Ecosystem Services[J]. Acta Ecologica Sinica, 2021, 41 (15): 6012-6023.

  • 期刊类型引用(0)

    其他类型引用(1)

图(4)  /  表(2)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  15
  • PDF下载量:  94
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-06-21
  • 修回日期:  2023-12-17
  • 网络出版日期:  2023-12-27
  • 刊出日期:  2024-03-09

目录

/

返回文章
返回