CN 11-5366/S     ISSN 1673-1530
“风景园林,不只是一本期刊。”
  • 微信订阅号
  • 中文核心期刊
  • 中国科技核心期刊 (中国科技论文统计源期刊)

气候变化背景下热风险感知与住区居民体力活动的关系研究

董慰, 姜润声, 董禹, 裴溟涵

董慰,姜润声,董禹,裴溟涵.气候变化背景下热风险感知与住区居民体力活动的关系研究[J].风景园林,2024,31(4):21-28.
引用本文: 董慰,姜润声,董禹,裴溟涵.气候变化背景下热风险感知与住区居民体力活动的关系研究[J].风景园林,2024,31(4):21-28.
DONG W, JIANG R S, DONG Y, PEI M H. Relationship Between Heat Risk Perception and Physical Activity of Residents in the Context of Climate Change[J]. Landscape Architecture, 2024, 31(4): 21-28.
Citation: DONG W, JIANG R S, DONG Y, PEI M H. Relationship Between Heat Risk Perception and Physical Activity of Residents in the Context of Climate Change[J]. Landscape Architecture, 2024, 31(4): 21-28.

气候变化背景下热风险感知与住区居民体力活动的关系研究

基金项目: 国家自然科学基金面上项目“促进社区社会健康的建成环境要素及规划调控机制研究”(编号 52278057)
详细信息
    作者简介:

    董慰/女/博士/哈尔滨工业大学建筑与设计学院教授、副院长/自然资源部寒地国土空间规划与生态保护修复重点实验室成员/研究方向为城市设计理论与方法

    姜润声/男/哈尔滨工业大学建筑与设计学院在读博士研究生/自然资源部寒地国土空间规划与生态保护修复重点实验室成员/研究方向为城市气候适应性与可持续规划

    董禹/男/博士/哈尔滨工业大学建筑与设计学院副教授、博士生导师/自然资源部寒地国土空间规划与生态保护修复重点实验室成员/研究方向为低碳城市、社区生活圈、健康城市、国家公园与自然保护地

    裴溟涵/男/哈尔滨工业大学建筑与设计学院在读硕士研究生/自然资源部寒地国土空间规划与生态保护修复重点实验室成员/研究方向为建成环境与居民感知、居民行为

    通讯作者:

    董禹: dongyu@hit.edu.cn

  • 中图分类号: TU984

Relationship Between Heat Risk Perception and Physical Activity of Residents in the Context of Climate Change

More Information
    Author Bio:

    DONG Wei, Ph.D., is a professor in and vice dean of the School of Architecture and Design, Harbin Institute of Technology, and a member of the Key Laboratory of Territorial Spatial Planning and Ecological Protection and Restoration in Cold Regions, Ministry of Natural Resources. Her research focuses on theory and method of urban design

    JIANG Runsheng is a Ph.D. candidate in the School of Architecture and Design, Harbin Institute of Technology, and a member of the Key Laboratory of Territorial Spatial Planning and Ecological Protection and Restoration in Cold Regions, Ministry of Natural Resources. His research focuses on urban climate adaptability and sustainable planning

    DONG Yu, Ph.D., is an associate professor and doctoral supervisor in the School of Architecture and Design, Harbin Institute of Technology, and a member of the Key Laboratory of Territorial Spatial Planning and Ecological Protection and Restoration in Cold Regions, Ministry of Natural Resources. His research focuses on low carbon city, community life circle, healthy city, national park, and protected area

    PEI Minghan is a master student in the School of Architecture and Design, Harbin Institute of Technology, and a member of the Key Laboratory of Territorial Spatial Planning and Ecological Protection and Restoration in Cold Regions, Ministry of Natural Resources. His research focuses on built environment, residents’ perception, and residents’ behavior

    Corresponding author:

    DONG Yu: dongyu@hit.edu.cn

  • 摘要:
    目的 

    气候变化背景下,体力活动不仅受到客观建成环境与真实热风险影响,也受到主观心理感知影响。分析住区居民的热风险感知(heat risk perception, HRP)与体力活动的关系,为应对气候变化健康风险的城市规划研究与实践提供实证基础。

    方法 

    以哈尔滨市为例,采用问卷调查和分层回归的方法,揭示了“恐惧”“态度”和“适应”3个维度上的HRP水平与体力活动水平分别在不同局地气候分区(local climate zone, LCZ)类型的住区中的差异以及二者间的关系。

    结果 

    HRP与体力活动相关,其中恐惧和态度感知减少了体力活动,适应则增加了体力活动;HRP能够显著提高住区建成环境与体力活动模型的准确性,开放型中层住区居民具有最低的恐惧和态度感知水平,以及最高的适应感知水平和体力活动水平。

    结论 

    从风险感知视角揭示了气候变化和建成环境对居民健康的间接影响,为城市气候安全治理和健康城市规划提供参考。

    Abstract:
    Objective 

    As climate change and global warming continue to intensify, it is crucial to understand how appropriate urban built environments can mitigate the adverse effects of climate change stress and heat risk. However, less attention has been paid to the role of individual perception and behavior in response to climate change. Research has identified a set of psychological factors that dominate the process of decision-making in the face of climate change and heat risk, known as climate change and heat risk perception (HRP). Nevertheless, there is a lack of research exploring how urban residents’ perception of heat risk in the context of climate change might affect their physical activity in the built environment.

    Methods 

    To address the aforesaid research gap, this research focuses on the residential areas in Harbin’s built-up area. The World Urban Database and Access Portal Tools (WUDAPT) method is used to identify the LCZ types within these areas. A stratified sampling approach is then employed in five typical residential areas to gather data through questionnaire surveys. These surveys mainly collect information on residents’ HRP and physical activity levels, aiming to understand the differences and relationships between HRP levels in the dimensions of “fear”, “attitude” and “adaptation” and physical activity levels across residential areas with different LCZ types .

    Results 

    1) This research suggests that HRP is indeed related to physical activity level. It is found that fear and attitude perceptions can reduce physical activity level, while adaptation perception can improve physical activity level. Additionally, HRP can significantly improve the accuracy of the built environment and physical activity model. Residents in residential areas with open layout and moderate density exhibit the lowest fear and attitude perceptions, as well as the highest adaptation perceptions and physical activity levels. 2) This research provides valuable insights into the indirect impacts of climate change and the built environment on residents’ health through the lens of risk perception. It highlights the importance of considering psychological factors such as HRP in urban climate governance and healthy urban planning. By understanding how individuals perceive and respond to climate change and heat risk, urban planners and policymakers can better design built environments that encourage physical activity and mitigate the negative health impacts of climate change. 3) The research underscores the need for further research on the complex interplay between climate change, the built environment, and human health. As the climate continues to change, it is essential to understand how individuals perceive and adapt to these changes and how urban environments can be designed to support healthy lifestyles. 4) This research can inform policies and interventions that promote physical activity and enhance the well-being of urban residents in the face of climate change. In conclusion, climate change and its associated heat risks pose significant challenges to human health, particularly in urban areas. Understanding the role of individual perception and behavior in response to climate change and heat risk is crucial for developing effective strategies to mitigate the negative health impacts of climate change. By considering psychological factors such as HRP in urban planning and design, urban environments can be better equipped to support physical activity and promote the well-being of residents.

    Conclusion 

    This research serves as a valuable contribution to the futrue literature on climate change, the built environment, and human health. It highlights the importance of integrating psychological factors into urban climate governance and healthy urban planning. As the world continues to grapple with the challenges of climate change, this research underscores the need for interdisciplinary approaches that consider the complex interactions between the environment, human behavior, and health outcomes. Ultimately, addressing the risks posed by climate change and creating healthy urban environments requires a comprehensive understanding of the social, psychological, and environmental factors at play. By referring the insights provided by this research, urban planners and policymakers can work towards creating built environments that are resilient to climate change.

  • 在这个充满变化和不确定性的时代,城市条件持续变化,气候变化不断带来新的挑战,城市需要适应这些变化,才能保障并提升居民的生活品质。为确保未来宜居城市空间的可持续性、健康性及安全性,需要采取更具整体性的城市发展策略。可持续规划涵盖多个议题,其中核心理念包括空间管理、新型交通规划理念,以及水资源管理等生态规划理念。

    霍耶-措斯楚普市(Høje Taastrup)是邻近哥本哈根市的一座小城镇。由于之前的一系列城市发展措施,城市的整体面貌缺乏统一性。2011年,政府发起了一场创意竞赛,目的是重新开发城市中心的大片区域。该竞赛要求采取城市干预措施,以恢复20世纪70年代的发展盛况,重建区域包括一个已经失去吸引力的购物中心和毗邻的停车场。重建项目需要把几乎空置和未使用的大型停车场改造成一个全新的、充满活力的空间,使场地重具吸引力。在项目规划期间,政府开始建造新的住房和商业空间。随着霍耶-措斯楚普市居民对居住空间的需求急剧增加,规划中的多用途建筑几乎都被改建为住宅,社区的人口也更加稠密。霍耶-措斯楚普市中心公园也因此成为满足居民社交需求的一处重要城市空间。

    振兴改造该地区的规划方案还需要考虑当地的气候条件。作为易受气候变化影响的地区,近年来哥本哈根及周边地区的降雨量越来越大。2011年夏天,一场突如其来的特大暴雨导致多个城区受灾。洪灾过后,哥本哈根及周边地区的雨洪评估结果显示,整个区域缺乏应对未来极端天气条件的必要保护措施。作为可持续发展城市及气候中和城市转型的先锋示范点,哥本哈根市率先实施了海绵城市理念,设计了可持续的基础设施来收集、管理和利用雨水。《哥本哈根雨洪管理总体规划》也同步出台,该规划制定了相应的导则用来应对未来可能会增多的暴雨事件。在哥本哈根及周边城镇采取的任何干预措施都需要有能力应对未来强降雨。

    霍耶-措斯楚普市中心区域的规划愿景综合考虑了社会、经济与环境可持续发展的诸多方面,满足了公众对于具有吸引力的公共空间的需求,同时为该地区面临的气候挑战找到了创新的解决方案。这项综合性工程采用了整体性的规划策略,在市中心区域营建了一个开阔的城市公园,将零散的区域整合在一起,并通过动态活动和文化活力为城市注入生机。城市公共空间在人与人的社交互动中发挥着至关重要的作用。随着人口流动性增强和城市人口数量的增长,不同年龄层、具有不同文化背景的群体在城市中的互动变得日益频繁,因此促进不同群体在城市中和谐共处变得尤为重要。

    霍耶-措斯楚普市中心的城市改造重点是围绕一个宽阔的城市公园塑造充满活力且具有凝聚力的城市中心。这一开放空间被规划为贯穿整个街区的公共空间骨干,从火车站一直延伸至商业中心,全长达1 km。公园将分散的街区连接起来,在新旧建筑之间形成了一种互动的界面,建立建筑、景观、城市空间及不同项目之间的互动。公园成为城市中央的绿色核心,与城市现有的花园、球场和广场系统相得益彰,增强了现有公共空间的存在感,同时模糊了绿地与城市之间的界限。

    改造后的公园以骑行和徒步的人流为脉络,映射出都市生活的缩影,在这里,景观在建立人与场所之间的关系方面发挥着不可或缺的作用。得益于基础设施支撑,公园创建了一条安全、宜人、充满体验感的游线贯穿城区,引入了各种动态活动,为城区增添了全天候的文化活力。东西两侧的大型市民广场吸引着游客,人们可以在绿地里享受闲暇时光,还可以参加各种室内外活动和团体体育活动。公园设有篮球场、多功能运动区、自行车道、慢跑道、滑板区以及适合不同年龄段儿童的灵活游戏区。

    公园的空间设计采取趣味性的处理手法,利用不同材质进行有序搭配,为公园沿线的各类活动提供了便利。场地中巧妙的竖向设计形成了特殊的地形,创造出了许多意想不到的游玩方式,满足了不同群体的使用需求。活动空间带在一些区域延展扩大,形成开阔场地,在另一些区域则收敛为线性布局,为不同形式的娱乐活动创造独立的空间。设计巧妙地利用了建筑间隙和带状场地旁的动态流动空间,为更多的休闲活动、学习以及其他“慢生活”方式提供场所,游人可以在街边的咖啡厅享受户外用餐或小酌。

    狭长的滑板公园令人印象深刻,作为新的绿色城市公园的中心和划分空间的要素,贯穿了整个公园及周边邻里街区,创造出多样的休闲与健身活动空间。作为城市公园的核心区域,滑板公园促进了城市文化繁荣,提升了街区活力。

    蜿蜒曲折的滑板公园也是霍耶-措斯楚普市的基础设施活力轴线。在滑板公园和周边道路中,甚至在邻近地区中,都能体会到哥本哈根作为自行车之都的特质。在哥本哈根,自行车即便不是最主要的交通工具,也是城市生活的重要组成部分。长久以来,哥本哈根一直被视为自行车城市的典范,拥有深植于传统的自行车友好型基础设施。此外,哥本哈根以气候友好型为导向的交通政策,正日益受到其他国家关注。

    该改造项目的独特之处在于以多重空间设计为基础,运用了创新的气候适应性方法。当地的气候和生态条件是设计的灵感来源,可以预见,当地未来降雨量会越来越大,而土壤的吸收能力有限,结合现有条件,设计团队巧妙地设计了竖向地形结构,将水资源管理作为设计的关键。公园核心区不仅是世界最长的滑板公园,还超越了它作为公共空间的功能与美学价值。滑板公园还具有管理雨水的功能,可作为一个先进的水资源调控设施,通过针对性地布置水池、沟渠和蓄水库,大量雨水能被有效地收集、保留。收集到各个水池中的雨水可用于灌溉公园周围的绿化区域。多余的水则通过雨水和废水管网流入公园内的露天水池。这套管网系统增强了公园全段1 km范围内应对频繁暴雨的能力,最多可处理6 500 m3的水量。

    除了上述实用功能之外,滑板公园还是社区韧性和适应环境挑战能力的象征符号。游客们体验到的不仅是一个娱乐空间,他们还见证了一个以环保意识为核心的、可持续的、适应气候的城市生态系统的搭建。这种以水资源管理为核心的方法展现了创新与环境管理的和谐统一。

    霍耶-措斯楚普市中心公园的规划理念为当下时代紧迫而复杂的问题提供了现代化的解答。未来对于城市公共空间的需求将不断增加、标准也将逐步提高,但城市空间资源是有限的,在这样的背景下,有必要对基础设施进行综合式而非叠加式的规划。霍耶-措斯楚普市中心公园规划作为一个良好范例,展示了如何通过复合空间规划,赋予城市开放空间独特的地方风貌。公园的多功能属性引导使用者适应不断变化的天气和气候条件,让整个城市在发展与保护之间取得平衡。当今世界正努力应对城市化和气候变化带来的诸多问题,霍耶-措斯楚普市中心公园规划成功展示了可持续的整体性城市规划的变革潜力。

    (编辑 / 刘昱霏)

    项目类型:总体规划、城市景观、公共空间、广场、公园、体育设施

    项目地点:丹麦霍耶-措斯楚普市

    项目面积:57 000 m2

    设计年份:2011—2022年

    竣工年份:2022年

    设计公司:Topotek 1、Cobe、Glifberg-Lykke、Ramboll

    首席设计师:

    Topotek 1:马丁·莱因-卡诺、弗朗西斯卡·维尼埃

    Cobe:玛丽亚·施纳赫尔、梅雷特·金纳普·安德森、路易丝·弗拉克·德·内尔加德、马伊·维维、尔特·布哈特·维斯特加德、鲁内·博瑟鲁普·雅各布森

    设计团队:胡安·克鲁斯·戈麦斯·里盖蒂、巴勃罗·阿尔法罗

    图片来源:汉斯·约斯顿

    翻译:黄新悦

    图  1  总平面图
    Figure  1.  Site Plan
    图  2  雨水池及滑板公园局部鸟瞰图
    Figure  2.  Aerial view of a segment of the skatepark and rainwater basin
    图  3  景观设计增强了场地可持续性和活力,为娱乐、运动和游戏提供便捷场所,吸引不同年龄段的使用者
    Figure  3.  The landscape design enhances sustainability and resilience of the area, while offering flexibility for recreation, sports and play, that attract neighbours of all ages
    图  4  场地被茂密的植被覆盖,自行车道和人行道将整个场地连接起来
    Figure  4.  Overlooking the dense vegetation, the cycling and pedestrian paths provide connections throughout the site
    图  5  不同高度的汀步可应对降水时期不同的水位
    Figure  5.  Steps at varied levels cater to elevated paths during precipitation
    图  6  霍耶-措斯楚普市中心公园的中央绿地通过各种活动和社交互动建立起城市核心,绿地、运动场、滑冰道、人行道和自行车道与整体设计相得益彰
    Figure  6.  The central green nucleus in Downtown Høje Taastrup establishes the city center through activity and social interaction. Greenery, sports fields, skate paths, pedestrian walkways, and cycling routes complement the overall design
    图  7  下沉场地的不同高程为散步和社交活动创造了不同层次的活动场景
    Figure  7.  The varied terrain of the basin creates varied levels for walks and social encounters
    图  8  公共空间的用途广泛,可供每个人享用。丰富的竖向空间包含了台阶、舞台、座位区以及自行车道
    Figure  8.  The design of the public space is versatile in providing enjoyment for everyone. Amidst the varied topography it provides steps, stages, seating areas and cycling paths
    图  9  使用者在下沉场地中自发地进行活动
    Figure  9.  The topography allows for spontaneous play in public space
    图  10  雨洪管理基础设施是设计的核心部分,包括数百米长的水渠、备用蓄水池和雨水花园。这些基础设施遍布整个场地,与滑板公园融为一体
    Figure  10.  The water management infrastructure serves as the central aspect of the design. It features hundreds of meters of channels, supplementary reservoirs, and rain gardens. They are all distributed throughout the site, and integrated along the skatepark

    In an era defined by change and uncertainty, with fluctuating urban conditions and the continual challenges presented by climate change, cities need to adapt to these shifts to strengthen and maintain the quality of life in urban areas. Ensuring livable cities for the future, focusing on sustainable, healthy and safe living spaces, calls for a holistic approach to urban development. Sustainable planning encompasses diverse topics, with some of the central concepts including the management of space, planning innovative transportation concepts, and ecological considerations such as the management of water.

    The municipality of Høje Taastrup, a neighborhood not too far from Copenhagen, launched a competition for ideas in 2011 to redevelop a large area, at the time fragmented in appearance as the result of a number of previous urban development measures. Formally the competition called for an urban intervention to revive the popularity of a 1970s development, including a shopping mall and adjacent parking lot which had lost its attractiveness. The project would transform the large parking area, which stood mostly empty and unused, into a new vibrant development capable of refreshing the appeal of the site. During the planning years of the project, the construction of new housing and commercial spaces began in the area. The need for living space in the region was increasing at such a rate that the planned multi-use buildings were almost all repurposed as housing, densifying the neighborhood. The planned revitalization of the urban park in Høje Taastrup became an important space catering to the social needs of residents.

    While aiming to revitalize the area, the project also needed to consider local climatic conditions. On the front line of climate change, Copenhagen has been experiencing increasingly heavy rainfall. Numerous urban areas in the region were flooded following a particularly sudden and severe downpour in the summer of 2011. In the aftermath of this flooding hydraulic assessments of the conditions in the Copenhagen area found that the necessary protection against future extreme weather conditions was lacking. A leader in transforming to a sustainable, climate neutral city, Copenhagen implemented a sponge city concept, designing sustainable infrastructure to absorb, manage, and utilize rainwater. The Copenhagen Strategic Flood Masterplan was also introduced with guidelines defining a plan to manage predicted increasing torrential rainfall events. Any intervention in this region would also need the capacity to deal with this heavy rainfall predicted in the coming years.

    The vision for Downtown Høje Taastrup considers aspects of social, economic, and environmental sustainability, addressing the need for engaging public spaces, while finding innovative solutions to the climatic challenges faced by the region. The comprehensive endeavor embraces a holistic approach, creating an expansive city park weaving the fragmented area together and breathing life into the city through dynamic activity and cultural vibrancy. Public spaces play a vital role in social interaction and exchange between people in cities. The way in which we use public space has considerably changed over the last few decades. With increased movement and growing urban populations, considering encounters between different groups, in age, background and culture, living together in cities has become crucial to ensuring a harmonious coexistence.

    At heart, the urban transformation in Downtown Høje Taastrup is centered around an expansive city park, creating an active and cohesive center. The open space planning establishes a public space backbone running through the entire neighborhood, covering a kilometer in distance from the train station to the commercial center. The park sews together disparate neighborhoods to create a cohesive city and acts as a membrane between the old and new structures, creating interaction between architecture, landscape, urban space and program. Adding to the city’s existing system of gardens, courts and plazas, the park establishes a central green core that strengthens the presence of these existing public spaces and blurs the boundaries between park and city.

    Defined by the flow of people on bike and foot, the park exemplifies the urban condition, where the landscape plays an integral role in forging connections between people and place. With infrastructure supporting the area, the park creates a route through the new district that feels safe, inviting and full of experiences, introducing various dynamic activities and adding cultural vibrancy to the area at all times of the day. Large civic plazas on the eastern and western extremes draw visitors in, from where they can enjoy the leisure of the green spaces or partake in indoor and outdoor activities, including organized sports, basketball courts, intense multi-sports areas, bike lanes, running paths, skateboarding areas and flexible play areas for children of different ages.

    Characterized by a playful approach to space, a sequence of different materials facilitates the different activities along the route of the park. Responding to the different necessities, a unique topography and interesting three-dimensional forms generate opportunities for unexpected uses. The continuous activity strip expands into larger spaces and at other points contracts into a more linear configuration, keeping incompatible forms of recreation separate from one another. Captured in the interstices between buildings and the dynamic flows alongside this active strip, the design of the park includes opportunities for more leisurely activities, study and other slower-paced uses, such as enjoying outdoor dining or drinking at a street café.

    An impressively long skate park forms the central, spatially defining element of the new green urban park, becoming the primary connecting element running throughout the park and along the entire neighborhood and creating a wide range of spaces for recreational and exercise purposes. As the heart of the urban park, it strengthens the urban culture and vibrancy of the neighborhood.

    The long meandering skate park serves as an infrastructural mobility axis for Høje Taastrup. The qualities of Copenhagen as a cycling city form part of the skate park and the surrounding paths, extending into the neighboring areas. Cycling is an important, if not the dominant form of transport and part of urban life in Copenhagen. The city has long been regarded as a model example of a cycling city, with traditionally anchored bicycle-friendly infrastructure, promoting a climate-friendly orientation in transport policy which is increasingly being looked to from other countries.

    What sets this project apart is its innovative approach to climate resilience, grounded in multiple spatial coding. The response was informed by the local climatic and ecological conditions, a combination of the anticipated increasingly heavy rainfall and soil with limited absorbency, making water management central to the concept. A topographical structure was created to cater to the combination of these conditions. Disguised as the world’s longest skating park, the topography of the public space goes beyond its program and aesthetics. It serves the dual purpose of ingeniously managing rainwater, effectively turning the skatepark into an advanced water management system, with strategically placed basins, ditches and reservoirs which can effectively retain large quantities of water. The rainwater collected in the various basins is used to irrigate the surrounding green areas of the park. Excess water is channeled through a network of rain- and wastewater pipes into an open rainwater pond in the park. This pipe network reinforces the infrastructure’s ability to handle frequent rainstorms along the entire kilometer stretch of the skatepark, ensuring the capacity to handle a volume of up to 6,500 m3.

    Beyond this utilitarian function, the skatepark emerges as a symbol of community resilience and adaptability to environmental challenges. Visitors of the park experience more than just a recreational space. They become witnesses of a sustainable, climate-responsive urban ecosystem where environmental consciousness is situated at the core. This water-centric approach exemplifies the harmonious integration of innovation and environmental stewardship.

    The planning concept implemented in Høje Taastrup provides a contemporary response to the pressing and complex issues of our time. Set against the backdrop of increasing demand as well as higher requirements for urban public spaces, and the limited spatial resources available in cities, the integrative rather than additive planning of infrastructure not only makes sense but is becoming increasingly necessary. Downtown Høje Taastrup serves as an example of the ability of multiple spatial coding to enrich urban open spaces with unique local characteristics. The parallel uses catered for here teaches the users to live with changing weather patterns and climatic conditions, taking steps to balance growth with ecological responsibility. In a world grappling with the complexities of urbanization and climate change, Downtown Høje Taastrup demonstrates the transformative potential of holistic, sustainable urban planning.

    (Editor / LIU Yufei)

    Project Type: master plan, urban landscape, public space, square, park, sports

    Project Location: Høje Taastrup, Denmark

    Project Area: 57,000 m2

    Design Year: 2011−2022

    Completion Year: 2022

    Design Firms: Topotek 1, Cobe, Glifberg-Lykke, Ramboll

    Lead Designer:

    Topotek 1: Martin Rein-Cano, Francesca Venier

    Cobe: Maria Schønherr, Merete Kinnerup Andersen, Louise Flach de Neergaard, Maj Wiwe, Dorte Buchardt Westergaard, Rune Boserup Jacobsen

    Design Team: Juan Cruz Gómez Righetti, Pablo Alfaro

    Image Source: Hanns Joosten

    Translator: HUANG Xinyue

    注释:
    图表来源(Sources of Figures and Tables):
    文中图表均由作者绘制,图3的地图底图均来自百度地图(2023)。
  • 图  1   研究框架

    Figure  1.   Research framework

    图  2   哈尔滨在2013—2023年6—8月间的空气温度(2-1)、相对湿度(2-2)、风速(2-3)的历史变化

    Figure  2.   Historical climate changes in air temperature (2-1), relative humidity (2-2) and wind speed (2-3) in Harbin from June to August of 2013−2023

    图  3   哈尔滨主城区LCZ分类结果

    Figure  3.   LCZ classification results of the main urban area of Harbin

    图  4   HRP与体力活动的Pearson相关性分析结果

    Figure  4.   Results of Pearson correlation analysis of HRP and physical activity

    表  1   HRP问卷的维度与指标[11, 17, 20, 29-34]

    Table  1   Dimensions and indicators of HRP questionnaire[11,17, 20, 29-34]

    假设维度指标编号指标含义
    负向 恐惧[29] Fr1 对现阶段气候变化以及热浪等极端天气事件的恐惧程度[29]
    Fr2 产生对气候变化以及热浪等极端天气事件的恐惧/担心情绪的频率[32]
    Fr3 对未来气候变化进程的恐惧/担心程度[17]
    态度[30] Rc1 认同气候变化对自己生活产生负面影响的程度[30]
    Rc2 认同未来气候变化会持续下去的程度[33]
    Pa1 认为自己很关注气候变化[34]
    Pa2 认为气候变化相关报道越来越多[34]
    正向 适应[20] Ad1 认为自己和家人有能力应对气候变化[30]
    Ad2 认为自己和家人为应对气候变化做好了准备[30]
    CF 认为自己所在住区的气候条件很舒适[11]
    下载: 导出CSV

    表  2   住区类型的哑变量设置

    Table  2   Dummy variable settings for residential area types

    住区类型哑变量
    Lcz1Lcz2Lcz3Lcz4
    LCZ11000
    LCZ20100
    LCZ30010
    LCZ40001
    LCZ50000
    下载: 导出CSV

    表  3   HRP的单因素方差分析结果

    Table  3   Results of one-way ANOVA for HRP

    HRP
    维度
    HRP
    指标
    平均数±标准差Fp
    LCZ1LCZ2LCZ3LCZ4LCZ5
    恐惧Fr12.981±0.3102.948±0.5102.829±0.7902.154±0.5371.561±0.96356.1740
    Fr22.906±0.4052.610±0.6912.610±0.8032.662±0.6682.167±0.51410.0190.017
    Fr33.868±0.5562.558±0.6593.000±1.1182.646±0.6232.121±0.37342.8200
    态度Rc12.981±0.1372.935±0.2962.943±0.4772.862±0.3902.318±0.55930.4520.003
    Rc23.000±0.3403.091±0.5423.667±0.5992.969±0.3942.439±0.74751.7510
    Pa13.925±0.3853.468±0.8042.743±0.6652.846±0.5372.273±0.54267.7940
    Pa21.981±0.2391.234±0.5351.324±0.6433.231±1.1963.212±1.28397.0400
    适应Ad11.075±0.3312.052±0.4842.676±0.6582.831±0.4533.470±0.881133.4990
    Ad21.113±0.4671.403±0.6932.181±0.7042.785±0.6493.439±0.994111.3390
    CF1.094±0.4051.974±1.3373.724±0.8603.354±0.6483.212±0.691105.7630
    下载: 导出CSV

    表  4   体力活动的单因素方差分析结果

    Table  4   Results of one-way ANOVA for physical activity

    体力活动
    类型
    平均数±标准差Fp
    LCZ1LCZ2LCZ3LCZ4LCZ5
    步行时长1.943±0.2333.182±1.2002.486±0.9622.077±0.5943.561±0.99438.7790
    久坐时长4.962±0.1922.883±1.3672.829±1.3264.585±0.9832.379±0.73973.2270
    代谢当量0.059±0.0070.070±0.0180.284±0.1310.139±0.0660.250±0.06648.1580
    下载: 导出CSV

    表  5   OLS分层回归模型结果

    Table  5   Results of OLS layered regression model

    层级自变量影响系数
    久坐时长步行时长代谢当量
     Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9
    人口与
    社会经济因素
    居住时长−0.281***−0.072−0.1470.311***0.1040.165**−0.098−0.028−0.009
    性别0.0460.136**0.100−0.185***−0.277***−0.288***0.074−0.040−0.109*
    受教育程度−0.0780.000−0.005−0.149**−0.118**0.0610.377***0.248***0.033
    年龄−0.333***−0.235***−0.240***0.0450.0990.254***0.438***0.264***0.185***
    收入−0.0810.0450.0410.210***0.039−0.125**0.110−0.002−0.013
    暴露经历0.305***−0.199***0.006−0.398***0.320***0.148**0.186***0.320***0.186***
    住区类型
    (对照LCZ5)
    Lcz10.572***0.540***−0.463***−0.671***−0.164*0.139
    Lcz20.281***0.129−0.319***−0.279***−0.453***−0.101
    Lcz30.282***0.112−0.537***−0.297***−0.0250.070
    Lcz40.495***0.255***−0.431***−0.296***−0.231***−0.139*
    HRPFr10.122*−0.221***−0.114
    Fr2−0.0760.0350.008
    Fr3−0.240*0.0980.252**
    Rc10.149*−0.120c−0.005
    Rc20.099−0.153**−0.021
    Pa10.0280.1150.054
    Pa20.317***0.133−0.067
    Ad1−0.267***0.0040.399***
    Ad2−0.165*0.0120.154*
    CF0.257***−0.360***0.319***
    调整后R20.4020.5420.6530.3390.4630.5660.4160.5400.649
    F410.875440.227350.332320.260290.170240.764420.677410.734310.941
    AIC840.007−70.052−1180.079−1000.634−1500.990−2560.44623580.35022810.95621830.837
      注:*代表显著性水平<0.05,**代表显著性水平<0.01,***代表显著性水平<0.001;空白表示对应的变量尚未被引入模型。
    下载: 导出CSV
  • [1]

    ALLEN M, DUBE O P, SOLECKI W, et al. Intergovernmental Panel on Climate Change. Global Warming of 1.5 °C[EB/OL]. (2018) [2024-03-11]. http://www.ipcc.ch/report/sr15/.

    [2]

    WATTS N, AMANN M, AYEB-KARLSSON S, et al. The Lancet Countdown on Health and Climate Change: From 25 Years of Inaction to a Global Transformation for Public Health[J]. The Lancet, 2018, 391 (10120): 581-630. doi: 10.1016/S0140-6736(17)32464-9

    [3] 袁青,孟久琦,冷红.气候变化健康风险的城市空间影响及规划干预[J].城市规划,2021,45(3):71-80.

    YUAN Q, MENG J Q, LENG H. Urban Spatial Impacts on Residents’ Health Risk Caused by Climate Change and Planning Intervention[J]. City Planning Review, 2021, 45 (3): 71-80.

    [4]

    SANEINEJAD S, ROORDA MJ, KENNEDY C. Modelling the Impact of Weather Conditions on Active Transportation Travel Behaviour[J]. Transportation Research Part D: Transport and Environment, 2012, 17 (2): 129-137. doi: 10.1016/j.trd.2011.09.005

    [5]

    TU L, MARZOUK S, DOWDELL K N, et al. Reimagining Urban Spaces: Green Spaces, Obesity, and Health Resilience in an Era of Extreme Heat[J/OL]. Journal of Urban Health, 2024: 38441853[2024-03-12]. https://doi.org/10.1007/s11524-024-00834-2.

    [6]

    HUANG Z L, DONG J Y, CHEN Z R, et al. Spatiotemporal Characteristics of Public Recreational Activity in Urban Green Space Under Summer Heat[J]. Forests, 2022, 13 (8): 1268. doi: 10.3390/f13081268

    [7] 刘珂秀,马椿栋,陈威,等.面向小气候热舒适性的滨水景观规划设计探索[J].风景园林,2020,27(11):104-109.

    LIU K X, MA C D, CHEN W, et al. Exploration of Waterfront Landscape Planning and Design for Thermal Comfort in Microclimate[J]. Landscape Architecture, 2020, 27 (11): 104-109.

    [8] 苏王新,常青.城市热缓解的基于自然的解决方案与实施路径:以北京市为例[J].风景园林,2022,29(6):26-32.

    SU W X, CHANG Q. Nature-Based Solutions for Urban Heat Mitigation and Implementation Path Thereof: A Case Study of Beijing[J]. Landscape Architecture, 2022, 29 (6): 26-32.

    [9] 游晓婕,李琼,孟庆林.城市热岛空间格局及形态差异化调控策略研究:以广州市中心城区为例[J].风景园林,2021,28(5):74-79.

    YOU X J, LI Q, MENG Q L. Research on Spatial Patterns and Morphological Differentiation Control Strategy of Urban Heat Islands: A Case Study of Downtown Area of Guangzhou City[J]. Landscape Architecture, 2021, 28 (5): 74-79.

    [10] 李丹宁,刘东云,王鑫.缓解城市热岛效应的硬质景观设计方法研究综述[J].风景园林,2022,29(8):71-78.

    LI D N, LIU D Y, WANG X. A Review of Research on Hard Landscape Design Methods to Mitigate Urban Heat Island Effect[J]. Landscape Architecture, 2022, 29 (8): 71-78.

    [11]

    MA X Y, TIAN Y, DU M, et al. How to Design Comfortable Open Spaces for the Elderly? Implications of Their Thermal Perceptions in an Urban Park[J]. Science of The Total Environment, 2021, 768: 144985. doi: 10.1016/j.scitotenv.2021.144985

    [12]

    NIU J Q, XIONG J P, QIN H Q, et al. Influence of Thermal Comfort of Green Spaces on Physical Activity: Empirical Study in an Urban Park in Chongqing, China[J]. Building and Environment, 2022, 219: 109168. doi: 10.1016/j.buildenv.2022.109168

    [13]

    WONG-PARODI G, GARFIN D R. Hurricane Adaptation Behaviors in Texas and Florida: Exploring the Roles of Negative Personal Experience and Subjective Attribution to Climate Change[J]. Environmental Research Letters, 2022, 17 (3): 034033. doi: 10.1088/1748-9326/ac4858

    [14]

    STÅHL T, RÜTTEN A, NUTBEAM D, et al. The Importance of the Social Environment for Physically Active Lifestyle: Results from an International Study[J]. Social Science & Medicine, 2001, 52 (1): 1-10.

    [15]

    RENN O. Risk Governance: Coping with Uncertainty in a Complex World[M]. London: Routledge, 2017.

    [16]

    RANA I A, JAMSHED A, YOUNAS Z I, et al. Characterizing Flood Risk Perception in Urban Communities of Pakistan[J]. International Journal of Disaster Risk Reduction, 2020, 46: 101624. doi: 10.1016/j.ijdrr.2020.101624

    [17]

    ASLAM A, RANA I A. Impact of the Built Environment on Climate Change Risk Perception and Psychological Distancing: Empirical Evidence from Islamabad, Pakistan[J]. Environmental Science & Policy, 2022, 127: 228-240.

    [18]

    YAZAR M, YORK A, LARSON K L. Adaptation, Exposure, and Politics: Local Extreme Heat and Global Climate Change Risk Perceptions in the Phoenix Metropolitan Region, USA[J]. Cities, 2022, 127: 103763. doi: 10.1016/j.cities.2022.103763

    [19]

    HASS A L, RUNKLE J D, SUGG M M. The Driving Influences of Human Perception to Extreme Heat: A Scoping Review[J]. Environmental Research, 2021, 197: 111173. doi: 10.1016/j.envres.2021.111173

    [20]

    DHAR T, BORNSTEIN L, LIZARRALDE G, et al. Risk Perception: A Lens for Understanding Adaptive Behaviour in the Age of Climate Change? Narratives from the Global South[J]. International Journal of Disaster Risk Reduction, 2023, 95: 103886. doi: 10.1016/j.ijdrr.2023.103886

    [21]

    GROULX M, LEWIS J, LEMIEUX C, et al. Place-Based Climate Change Adaptation: A Critical Case Study of Climate Change Messaging and Collective Action in Churchill, Manitoba[J]. Landscape and Urban Planning, 2014, 132: 136-147. doi: 10.1016/j.landurbplan.2014.09.002

    [22]

    BECHTEL B, ALEXANDER P J, BÖHNER J, et al. Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities[J]. ISPRS International Journal of Geo-Information, 2015, 4 (1): 199-219. doi: 10.3390/ijgi4010199

    [23]

    BECHTEL B, ALEXANDER P J, BECK C, et al. Generating WUDAPT Level 0 Data: Current Status of Production and Evaluation[J]. Urban Climate, 2019, 27: 24-45. doi: 10.1016/j.uclim.2018.10.001

    [24]

    CAO J L, MAO R, NING H R, et al. Exploring the Natural Ventilation Potential for Supertall Buildings Considering Vertical Meteorology: A Case Study in Harbin, China[J]. Applied Thermal Engineering, 2024, 239: 122163. doi: 10.1016/j.applthermaleng.2023.122163

    [25]

    LIN Y F, YANG L, LUO M H. Physiological and Subjective Thermal Responses to Heat Exposure in Northern and Southern Chinese People[J]. Building Simulation, 2021, 14: 1619-1631. doi: 10.1007/s12273-020-0714-2

    [26]

    STEWART I D, OKE T R. Local Climate Zones for Urban Temperature Studies[J]. Bulletin of the American Meteorological Society, 2012, 93 (12): 1879-1900. doi: 10.1175/BAMS-D-11-00019.1

    [27]

    LIU A W, MA X Y, DU M, et al. The Cooling Intensity of Green Infrastructure in Local Climate Zones: A Comparative Study in China’s Cold Region[J]. Urban Climate, 2023, 51: 101631. doi: 10.1016/j.uclim.2023.101631

    [28]

    MA L, HUANG G A, JOHNSON B A, et al. Investigating Urban Heat-Related Health Risks Based on Local Climate Zones: A Case Study of Changzhou in China[J]. Sustainable Cities and Society, 2023, 91: 104402. doi: 10.1016/j.scs.2023.104402

    [29]

    RANA I A, ROUTRAY J K. Actual Vis-À-Vis Perceived Risk of Flood Prone Urban Communities in Pakistan[J]. International Journal of Disaster Risk Reduction, 2016, 19: 366-378. doi: 10.1016/j.ijdrr.2016.08.028

    [30]

    HO M C, SHAW D, LIN S, et al. How Do Disaster Characteristics Influence Risk Perception?[J]. Risk Analysis: An International Journal, 2008, 28 (3): 635-643. doi: 10.1111/j.1539-6924.2008.01040.x

    [31] 董慰,王乃迪,董禹,等.日常活动地绿地感知与居民主观幸福感的关系:以哈尔滨香坊老工业区为例[J].风景园林,2021,28(5):23-29.

    DONG W, WANG N D, DONG Y, et al. Relationship Between Perception of Green Space and Subjective Well-Being of Residents in Different Venues of Daily Activities: A Case Study of Xiangfang Old Industrial Area in Harbin[J]. Landscape Architecture, 2021, 28 (5): 23-29.

    [32]

    GILBERT C, LACHLAN K. The Climate Change Risk Perception Model in The United States: A Replication Study[J]. Journal of Environmental Psychology, 2023, 86: 101969. doi: 10.1016/j.jenvp.2023.101969

    [33]

    MCDONALD R I, CHAI H Y, NEWELL B R. Personal Experience and the “Psychological Distance” of Climate Change: An Integrative Review[J]. Journal of Environmental Psychology, 2015, 44: 109-118. doi: 10.1016/j.jenvp.2015.10.003

    [34]

    SULLIVAN-WILEY K A, GIANOTTI A G S. Risk Perception in a Multi-hazard Environment[J]. World Development, 2017, 97: 138-152. doi: 10.1016/j.worlddev.2017.04.002

    [35]

    MCLOUGHLIN N. Communicating Adaptation: Using Psychological Insights to Facilitate Adaptive Responses to Climate Change Impacts[D]. Avon: University of Bath, 2021.

    [36]

    BELL S A, CHOI H J, LANGA K M, et al. Health Risk Behaviors After Disaster Exposure Among Older Adults[J]. Prehospital and Disaster Medicine, 2019, 34 (1): 95-97. doi: 10.1017/S1049023X18001231

    [37]

    LAI B S, LA GRECA A M, LLABRE M M. Children’s Sedentary Activity After Hurricane Exposure[J]. Psychological Trauma: Theory, Research, Practice, and Policy, 2014, 6 (3): 280. doi: 10.1037/a0033331

    [38]

    BADARO-SALIBA N, ADJIZIAN-GERARD J, ZAAROUR R, et al. LCZ Scheme for Assessing Urban Heat Island Intensity in a Complex Urban Area (Beirut, Lebanon)[J]. Urban Climate, 2021, 37: 100846. doi: 10.1016/j.uclim.2021.100846

    [39]

    YANG H O, LENG Q M, XIAO Y F, et al. Investigating the Impact of Urban Landscape Composition and Configuration on PM2.5 Concentration Under the LCZ Scheme: A Case Study in Nanchang, China[J]. Sustainable Cities and Society, 2022, 84: 104006. doi: 10.1016/j.scs.2022.104006

  • 期刊类型引用(0)

    其他类型引用(1)

图(4)  /  表(5)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  19
  • PDF下载量:  56
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-10-04
  • 修回日期:  2024-03-12
  • 网络出版日期:  2024-03-14
  • 刊出日期:  2024-04-09

目录

/

返回文章
返回