“双碳”背景下中国风电景观的立地布局特征及类型
详细信息Site Layout Characteristics and Types of Wind-Power Landscape in China Under the Background of “Carbon Peaking and Carbon Neutrality”
More Information-
摘要:目的
在“双碳”背景下,风电已成为继火电、水电之后的第三大主力电源。科学、系统地认识中国风电景观立地布局特征和类型,可为后续相关研究提供理论支持。
方法以2020年中国陆上风电景观为研究对象,提出“风电景观布局要素”体系,基于空间自相关分析、多环缓冲分析等方法,从自然、功能设备、人地实践3类要素分析风电景观立地布局特征;并选取地形地貌特征、周边景观类型、土地利用类型、环境条件4个景观特征因子作为分类依据,遵循自上而下的多等级分类思路,系统划分中国风电景观类型。
结果结果显示:1)风电景观立地布局呈多元化、区域性分布,部分区域存在与生态环境敏感区交叠等问题;2)风电景观可划分为山地、滨海等七大类,山地耕地、滨海林地等26子类。
结论基于此,提出基于风电景观布局要素的机理与影响、基于风电景观类型的评估与对比、风电景观评价标准及技术规范3个拟开展的研究方向。在一定程度上弥补了现阶段中国风电景观立地条件及类型等基础研究的空白,同时也拓宽了风电景观作为文化景观的研究边界,以期为未来风电快速发展背景下的自然景观资源保护和利用、风电景观规划设计实践提供支撑。
Abstract:ObjectiveUnder the background of China’s “Carbon Peaking and Carbon Neutrality” policy, wind power has become the third largest power source after thermal power and hydropower. It is not difficult to predict that renewable energy facilities, such as wind turbines will increasingly appear in urban and rural landscape, which will bring many research tasks under the framework of “renewable energy landscape” to the field of landscape architecture. A scientific and systematic understanding of the site layout characteristics and types of wind-power landscape in China can provide basic and theoretical support for subsequent related research.
MethodsThis research takes the onshore wind-power landscape of China in 2020 as the research object, proposes the framework of “layout elements of wind-power landscape”, and analyses the site layout characteristics of wind-power landscape in China based on the three elements of nature, functional equipment and human-land practice by such methods as Getis-Ord General G spatial autocorrelation analysis, and multiple ring buffer analysis. Following a top-down multi-level classification approach, the research selects the four landscape character factors of terrain and geomorphic features, surrounding landscape types, land use types and environmental conditions as classification criteria to systematically classify the types of wind-power landscape in China.
ResultsThe results show that: 1) The site layout of wind-power landscape is characterized by diversification and regional distribution. As to natural elements, the elevation distribution belongs to low value aggregation, while the slope and aspect distribution belong to high value aggregation. As to functional equipment elements, wind turbine forms with obvious landscape layout characteristics can be summarized into five types: linear type, dominant linear type, grid type, matrix type, and plum-blossom type. As to human-land practice elements, it has been found that the noise, light and shadow safety protection regulations for some wind-power projects need to be strengthened. 2) Wind-power landscape can be divided into 7 categories such as mountain and coast wind-power landscape and 26 subcategories such as mountainous arable land and coastal forest land wind-power landscape. The proportion of the 7 categories of landscape can be ranked as follow: III mountain wind-power landscape > I plain wind-power landscape > II hilly wind-power landscape > V coast wind-power landscape > VI riverside and lakeside wind-power landscape > IV plateau wind-power landscape > VII urban wind-power landscape. Among them, the total number of mountain and plain wind-power landscape accounts for 63.7%, forming the “foundation” of China’s wind-power landscape. Each wind-power landscape category presents an arched and banded interweaving pattern spatially. The northern plain wind-power landscape extension zone stretches and transitions to the south, blending with hilly and plateau wind-power landscape groups. The development zones of mountain wind-power landscape are mainly distributed in the southwest and central China regions, and the basal zone of coast wind-power landscape is in the southern region. Across the country, the mountain wind-power landscape, hilly wind-power landscape, plain wind-power landscape and coast wind-power landscape are distributed from west to east in sequence, which is corresponding to the “three steps” elevation change in China. The riverside and lakeside wind-power landscape and urban wind-power landscape are distributed in varying degrees of dispersion.
ConclusionBased on the above research results, three future research directions are proposed: mechanism and impact research based on wind-power landscape layout elements, evaluation and comparative research based on wind-power landscape types, and wind-power landscape evaluation standards and technical specifications. This research fills the gap in the framework of basic research on wind-power landscape in China to some extent, and expands the research boundary of wind-power landscape as a cultural landscape. The research results can provide a basis for scientific and systematic understanding of the classification and distribution characteristics of wind-power landscape in China, and a reference for the protection of natural landscape resources and the planning and design of wind-power landscape under the background of rapid wind-power development in the future.
-
注释:
① 根据中华人民共和国住房和城乡建设部发布的《城市居住区规划设计标准》(GB 50180—2018),以20%作为城市风电景观建筑密度限值。② 以各风电景观中的风机数量为字段值,基于ArcGIS软件的自然间断点分级法将风电景观分为小型(1~78台)、中型(79~202台)、大型(203~471台)、超大型(472~1 124台)4类。 -
数据名称 数据来源 数据详情 2020年中国陆上风机点位数据 陈玮整理的中国风电机组数据
(mp.weixin.qq.com/s/IXTV22yti_wwE7lf5EQ5tQ)基于OpenStreetMap网站,通过python程序处理获取 2020年中国标准地图 自然资源部标准地图服务系统(bzdt.ch.mnr.gov.cn) 审图号:GS(2020)4619号 2020年中国各省、市行政边界矢量数据 国家地球系统科学数据中心(www.geodata.cn) — 2020年中国地貌数据 国家青藏高原科学数据中心(data.tpdc.ac.cn) 中国1︰400万数字地貌数据集[34] 2020年中国土地利用数据 欧洲航天局(viewer.esa-worldcover.org) Sentinel-1、Sentinel-2卫星影像数据,10 m×10 m分辨率 2020年中国遥感影像数据 中国科学院计算机网络信息中心地理空间数据云
(www.gscloud.cn)Landsat 8卫星影像数据,30 m×30 m分辨率,8月,少云 2020年数字高程模型(digital elevation model, DEM)、道路、水系等基础地理信息数据 全国地理信息资源目录服务系统(www.webmap.cn) 比例为1︰100万,30 m×30 m分辨率 表 2 2020年中国风电景观点位空间自相关分析
Table 2 Spatial analysis of China’s wind-power landscape in 2020 based on Getis-Ord General G function
空间自相关分析因子 z得分 p值 高程 −0.90 <0.10 坡度 0.54 <0.05 坡向 0.02 <0.10 注:表中z得分是空间自相关分析因子的标准化值,p值表示变量为随机变量的概率值。 表 3 中国风电景观分类体系
Table 3 Classification of wind-power landscape in China
大类 子类 景观及风机排布特点 占比/% 主要分布区域 Ⅰ平原风
电景观Ⅰ-A平原荒漠风电景观 位于干旱与半干旱地区,地面覆盖大片砾石和细沙形成戈壁、沙漠景观,风机多呈矩阵型排布 10.7 31.3 内蒙古、甘肃、新疆 Ⅰ-B平原耕地风电景观 包括水田或旱地景观,风机多沿水田内的养殖池与灌溉水渠、旱地内的田埂布设 3.6 河南、山东 Ⅰ-C平原草地风电景观 位于植被形态以草本为主且植被覆盖度较高的草原 4.3 内蒙古 Ⅰ-D平原林地风电景观 多位于距居民点较近的灌木林地,道路景观明显 1.9 安徽、黑龙江 Ⅰ-E平原混合风电景观 风机周围以2种及以上的土地利用类型为主,草原向荒漠过渡的平原地区多为荒-草混合风电景观 10.8 内蒙古、宁夏 Ⅱ丘陵风
电景观Ⅱ-A丘陵荒漠风电景观 位于干旱与半干旱地区,地势起伏轻微,地表覆盖大片砾石形成戈壁景观,风机多呈矩阵型排布 1.7 17.2 内蒙古、新疆、宁夏 Ⅱ-B丘陵耕地风电景观 分布于丘陵的旱地景观破碎化严重,风机多设于旱地周围的零星草地上;分布于丘陵的水田主要形式为梯田,风机多沿梯田等高线布设 0.9 山东 Ⅱ-C丘陵草地风电景观 位于植被形态以草本为主且植被覆盖度较高的草原,四周围绕耕地 3.7 内蒙古、河北、宁夏 Ⅱ-D丘陵林地风电景观 多位于距居民点较近的灌木林地,地势起伏轻微,道路景观明显 2.7 云南、安徽、辽宁 Ⅱ-E丘陵混合风电景观 风机周围以2种及以上的土地利用类型为主,多为林-田、田-草、荒-草混合风电景观 8.2 河北、内蒙古、宁夏 Ⅲ山地风
电景观Ⅲ-A山地荒漠风电景观 位于干旱与半干旱地区,地势起伏大,属于因物理风化强烈作用所形成的戈壁或岩漠景观,风机数量多且多呈矩阵型排布 0.2 32.4 宁夏、西藏 Ⅲ-B山地耕地风电景观 山地耕地景观破碎化严重,风机多沿田埂布设 0.7 贵州 Ⅲ-C山地草地风电景观 位于地势起伏大、水分条件充足的草甸区域,风机沿山脊线布设 11.1 贵州、河南、山西 Ⅲ-D山地林地风电景观 多位于远离居民点、人为干扰极小的区域,道路景观明显,风机沿山脊线布设 16.2 重庆、云南、河北 Ⅲ-E山地混合风电景观 因山地景观高破碎化,风机周围多以3种及以上的土地利用类型为主,如林-田-荒-草的复杂混合风电景观 4.2 河北、内蒙古、宁夏 Ⅳ高原风
电景观Ⅳ-A高原荒漠风电景观 位于干旱与半干旱地区,地面覆盖大片砾石形成戈壁景观,风机多呈矩阵型排布 0.2 3.1 宁夏 Ⅳ-B高原耕地风电景观 多位于高原沟壑区,耕地撂荒严重,风机沿田埂布设 0.2 河南 Ⅳ-C高原草地风电景观 位于植被覆盖度较低且植被种类单一的草原景观 1.0 山西 Ⅳ-E高原混合风电景观 风机周围以2种及以上的土地利用类型为主,多为田-草混合风电景观 1.7 宁夏、陕西 Ⅴ滨海风
电景观Ⅴ-A滨海裸地风电景观 位于湿润与半湿润地区,且基本无植被覆盖的地表 0.7 10.6 浙江 Ⅴ-B滨海耕地风电景观 主要包括沿海盐田和养殖池景观,二者交错分布构成人工滨海湿地的重要组成部分,风机多沿田埂布设 3.1 山东、辽宁 Ⅴ-D滨海林地风电景观 地形地貌以山地、丘陵为主,风机沿山脊线布设 3.6 福建、广东、浙江 Ⅴ-F滨海海岸风电景观 周围景观以沿海基干林带、沿海盐田和沿海养殖池为主,风机沿海岸线布设 2.6 台湾、浙江 Ⅴ-G滨海滩涂风电景观 风机位于滩涂潮间带,包括永久海堤内侧(不受两潮侵蚀)、永久海堤上、永久海堤外侧3种类型 0.6 广东 Ⅵ河湖滩风
电景观Ⅵ-M河滩风电景观 风机位于河谷地貌中河床与谷坡之间的河滩,周围多为沿河呈带状或条状分布的河谷农业景观 0.7 4.5 黑龙江 Ⅵ-N湖滩风电景观 风机位于湖边水深时淹没、水浅时露出的湖滩,周围土地利用类型以湿地、耕地、草地为主 3.8 新疆、黑龙江、青海 Ⅶ城市风
电景观— 位于人口、经济、文化均高度集中的城市内部,周围景观硬质率较高,以建筑为主,风机未成组布设,一般以1~2台为单位插设 0.9 0.9 上海 -
[1] 中华人民共和国国家发展和改革委员会, 国家能源局, 中华人民共和国财政部, 等. “十四五”可再生能源发展规划[EB/OL].(2021-10-21)[2023-07-02].https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202206/P020220602315308557623.pdf. National Development and Reform Commission, National Energy Administration, Ministry of Finance of the People’s Republic of China, et al. Development Planning of Renewable Energy for the 14 th Five-Year Plan[EB/OL]. (2021-10-21)[2023-07-02]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202206/P020220602315308557623.pdf.
[2] 中华人民共和国国家发展和改革委员会. 2022年我国可再生能源发展情况[EB/OL].(2023-02-15)[2023-04-12]. https://www.ndrc.gov.cn/fggz/hjyzy/jnhnx/202302/t20230215_1348799.html. National Development and Reform Commission. Development of Renewable Energy in China in 2022[EB/OL]. (2023-02-15)[2023-04-12]. https://www.ndrc.gov.cn/fggz/hjyzy/jnhnx/202302/t20230215_1348799.html.
[3] 中华人民共和国国家发展和改革委员会. “十二五”期间风电产业发展回顾[EB/OL].(2017-12-21)[2023-04-12]. https://www.ndrc.gov.cn/xwdt/gdzt/xyqqd/201712/t20171221_1197827.html. National Development and Reform Commission. Review of the Development of Wind Power Industry During the 12 th Five Year-Plan Period[EB/OL]. (2017-12-21)[2023-04-12]. https://www.ndrc.gov.cn/fggz/hjyzy/jnhnx/202302/t20230215_1348799.html.
[4] 王倩娜.新能源景观: 后化石燃料时代下风景园林规划设计的新领域[J].风景园林,2016,23(11):72-78. WANG Q N. New Energy Landscape: A New Area for Landscape Architecture in the Post Fossil Fuel Era[J]. Landscape Architecture,2016,23 (11): 72-78.
[5] 魏雨萌, 王玉华, 李原欣, 等. 基于CiteSpace的国内外能源景观视觉环境质量评价研究综述[C]//中国环境科学学会环境工程分会. 2022年中国环境科学学会科学技术年会: 环境工程技术创新与应用分会场论文集(四). 北京: 环境工程, 2022: 926-933. WEI Y M, WANG Y H, LI Y X, et al. Review of Energy Landscape Visual Environment Quality Evaluation at Domestic and Foreign Based on Citespace[C]// Environmental Engineering Branch of Chinese Society for Environmental Sciences. The Science and Technology Annual Meeting of Chinese Society for Environmental Sciences in 2022: Collected Essays of Sub-Session IV on Innovation and Application of Environmental Engineering Technology. Beijing: Environmental Engineering, 2022: 926-933.
[6] MÖLLER B. Changing Wind-Power Landscapes: Regional Assessment of Visual Impact on Land Use and Population in Northern Jutland,Denmark[J]. Applied Energy,2006,83 (5): 477-494. doi: 10.1016/j.apenergy.2005.04.004
[7] 徐燊,廖维,黄靖.太阳能景观的集成设计[J].中国园林,2014,30(2):119-124. XU S,LIAO W,HUANG J. Integrated Design of Solar Landscape[J]. Chinese Landscape Architecture,2014,30 (2): 119-124.
[8] STREMKE S, VAN DEN DOBBELSTEEN A. Sustainable Energy Landscape: Designing, Planning, and Development[M]. Boca Raton: CRC Press, 2013.
[9] 黄昕珮,李琳.不同视角下的文化景观概念及范畴辨析[J].风景园林,2017,24(3):123-127. HUANG X P,LI L. Concepts and Categories of Cultural Landscape from Different Perspectives[J]. Landscape Architecture,2017,24 (3): 123-127.
[10] 梅尔尼克,肖遥,葛韵宇.气候变化时代视角下的文化景观保护[J].风景园林,2016,23(11):79-94. MELNICK R Z,XIAO Y,GE Y Y. Protecting Cultural Landscapes in the Era of Climate Change[J]. Landscape Architecture,2016,23 (11): 79-94.
[11] SHANG H D,BISHOP I D. Visual Threshold for Detection,Recognition and Visual Impact in Landscape Settings[J]. Journal of Environmental Psychology,2000,20 (2): 125-140. doi: 10.1006/jevp.1999.0153
[12] PASQUALETTI M J, GIPE P, RIGHTER W R. Wind Power in View: Energy Landscapes in a Crowded World[M]. San Diego: Academic Press, 2002.
[13] THAYER R L,FREEMAN C M. Altamont: Public Perceptions of a Wind Energy Landscape[J]. Landscape and Urban Planning,1987 (14): 379-98.
[14] ROTH M S,EITER S,ROHNER S,et al. Renewable Energy and Landscape Quality[J]. Landscape Journal,2018,37 (2): 124-126. doi: 10.3368/lj.37.2.124
[15] NERI M,JAMELI D,BERNARD E,et al. Green Versus Green? Adverting Potential Conflicts Between Wind Power Generation and Biodiversity Conservation in Brazil[J]. Perspectives in Ecology and Conservation,2019,17 (3): 131-135. doi: 10.1016/j.pecon.2019.08.004
[16] MAY R,MIDDEL H,STOKKE G B,et al. Global Life-Cycleimpacts of Onshore Wind-Power Plants on Bird Richness[J]. Environmental and Sustainability Indicators,2020,8: 100080. doi: 10.1016/j.indic.2020.100080
[17] SHALTOUT L M,YAN Z Y,PALEJIYA D,et al. Tradeoff Analysis of Energy Harvesting and Noise Emission for Distributed Wind Turbines[J]. Sustainable Energy Technologies and Assessments,2015,10: 12-21. doi: 10.1016/j.seta.2015.01.005
[18] KIM J H,NAM J H,YOO S H. Public Acceptance of a Large-Scale Offshore Wind Power Project in South Korea[J]. Marine Policy,2020,120: 104141. doi: 10.1016/j.marpol.2020.104141
[19] RODRIGUES M,MONTAÑÉS C,FUEYO N. A Method for the Assessment of the Visual Impact Caused by the Large-Scale Deployment of Renewable-Energy Facilities[J]. Environmental Impact Assessment Review,2010,30 (4): 240-246. doi: 10.1016/j.eiar.2009.10.004
[20] MOLNAROVA K,SKLENICKA P,STIBOREK J,et al. Visual Preferences for Wind Turbines: Location,Numbers and Respondent Characteristics[J]. Applied Energy,2012,92: 269-278.
[21] 西蒙斯,李佳怿.景观和能源[J].风景园林,2016,23(11):22-40. SIJMONS D,LI J Y. Landscape and Energy[J]. Landscape Architecture,2016,23 (11): 22-40.
[22] 李正.《景观与能源: 为转型而设计》[J].风景园林,2016,23(1):14. LI Z. Landscape and Energy: Designing Transition[J]. Landscape Architecture,2016,23 (1): 14.
[23] 佛兰,阎姝伊.能源景观计划[J].风景园林,2016,23(11):41-53. FOLLÉA B,YAN S Y. Energy Landscape Plans[J]. Landscape Architecture,2016,23 (11): 41-53.
[24] 劳科曼,刘峥.利用扩展的城市代谢框架来设想未来的能源景观[J].风景园林,2016,23(11):54-71. LOKMAN K,LIU Z. Utilizing an Expanded Framework of Urban Metabolism-to-Envision Futured Energy-Landscapes[J]. Landscape Architecture,2016,23 (11): 54-71.
[25] 王丹琦. 风电场环境设计研究[D]. 北京: 北京林业大学, 2011. WANG D Q. Research on Wind-Power Plant Environment Planning and Design[D]. Beijing: Beijing Forestry University, 2011.
[26] 徐昉.碳中和背景下风能发展对景观规划的影响[J].风景园林,2022,29(5):52-58. XU F. Impacts of Wind Energy Development on Landscape Planning in the Context of Carbon Neutrality[J]. Landscape Architecture,2022,29 (5): 52-58.
[27] 艾婧文,余坤勇,黄茹鲜,等.风电项目对潜在生态廊道的影响: 基于MSPA-MCR模型[J].生态学报,2023,43(9):3665-3676. AI J W,YU K Y,HUANG R X,et al. The Impact of Wind Power Projects on Potential Ecological Corridors Based on the MSPA-MCR Model[J]. Acta Ecologica Sinica,2023,43 (9): 3665-3676.
[28] 刘哲,马俊杰.基于景观生态的山区风电开发区域生态风险评价[J].西北大学学报(自然科学版),2014,44(1):127-132. doi: 10.16152/j.cnki.xdxbzr.2014.01.022 LIU Z,MA J J. The Assessment of Regional Ecological Risks of Wind Energy Exploitation in the Mountain Area Based on Landscape Ecology[J]. Journal of Northwest University (Natural Science Edition),2014,44 (1): 127-132. doi: 10.16152/j.cnki.xdxbzr.2014.01.022
[29] 赵闪闪. 长江三角洲海岸带风电开发对越冬水鸟的影响及其保育策略研究[D]. 上海: 华东师范大学, 2022. ZHAO S S. Study on the Impact of Onshore Wind Farm Developments on the Wintering Water Bird Sand Their Conservation Strategies in the Coast of Yangtze River Delta, China[D]. Shanghai: East China Normal University, 2022.
[30] 石婷婷. 渤海湾南岸湿地鸟类多样性及风电场对鸟类的影响[D]. 济南: 山东大学, 2020. SHI T T. Bird Diversity in the Wetland on the Southern Shore of Bohai Bay and the Impact of Wind Farms on Birds: A Case Study in Binzhou and Dongying[D]. Jinan: Shandong University, 2020.
[31] 国家能源局. 风电场项目环境影响评价技术规范: NB/T 31087—2016[S]. 北京: 中国电力出版社, 2016. National Energy Administration. Technical Specification for Environmental Impact Assessment of Wind Farm Projects: NB/T 31087–2016[S]. Beijing: China Electric Power Press, 2016.
[32] 中国可再生能源学会风能专业委员会. 2020年中国风电吊装容量统计简报[EB/OL].(2021-10-25)[2022-11-04]. http://www.eastwp.net/news/show.php?itemid=64325. Chinese Wind Energy Association. Statistical Briefing on China’s Wind Power Hoisting Capacity in 2020[EB/OL]. (2021-10-25)[2022-11-04]. http://www.eastwp.net/news/show.php?itemid=64325.
[33] FISCHER G,PRIELER S,VELTHUIZEN V H,et al. Biofuel Production Potentials in Europe: Sustainable Use of Cultivated Land and Pastures[J]. Part II: Land Use Scenarios. Biomass and Bioenergy,2010,34: 173-187.
[34] 程维明, 周成虎. 中国1︰400万数字地貌数据集[EB/OL]. (2018-04-06)[2022-11-04]. http://data.tpdc.ac.cn/zh-hans/data/63e290d7-7087-462a-acac-50195fba530b/. CHENG W M, ZHOU C H. China 1︰4 Million Digital Landform Data Set[EB/OL]. (2018-04-06)[2022-11-04]. http://data.tpdc.ac.cn/zh-hans/data/63e290d7-7087-462a-acac-50195fba530b/.
[35] 徐文廷,林建群.康区佛教文化景观的构成体系及类型研究[J].风景园林,2015,22(8):29-36. XU W T,LIN J Q. Research on Composition System and Types of Buddhist Cultural Landscapes in Kham Area[J]. Landscape Architecture,2015,22 (8): 29-36.
[36] 张杨,严国泰.新疆风景名胜区文化景观的构成要素及其类型研究[J].中国园林,2017,33(9):115-119. ZHANG Y,YAN G T. Study of Cultural Landscape Composition Factors and Types of the Scenic and Historic Interest Areas of Xinjiang Uygur Autonomous Region[J]. Chinese Landscape Architecture,2017,33 (9): 115-119.
[37] 国家林业和草原局.国家林业和草原局关于规范风电场项目建设使用林地的通知[EB/OL].(2019-02-26)[2023-07-02]. http://www.forestry.gov.cn/main/5925/20200414/090421225645198.html. National Forestry and Grassland Administration. Notice of National Forestry and Grassland Administration on Regulating the Use of Forest Land in the Construction of Wind Farm Projects[EB/OL]. (2019-02-26)[2023-07-02]. http://www.forestry.gov.cn/main/5925/20200414/090421225645198.html.
[38] 王跃华.风电场噪声、光影环境防护距离的研究[D].沈阳: 东北大学, 2011. WANG Y H. Wind Noise, Light and Shadow from the Study of Environmental Protection[D]. Shengyang: Northeastern University, 2011.
[39] 刘谞承, 肖朝明. 平原地区风电工程景观视觉环境影响分析: 以湛江某风电场工程为例[C]//中国环境科学学会. 2015年中国环境科学学会学术年会论文集(第一卷). 北京: 中国环境科学出版社, 2015: 1569-1573. LIU X C, XIAO C Y. Analysis of the Visual Environmental Impact of Wind Power Engineering Landscape in Plain Areas: Taking a Wind Farm Project in Zhanjiang as an Example[C]//Chinese Society for Environmental Sciences. Collected Papers (Volume I) of the Science and Technology Annual Meeting of Chinese Society for Environmental Sciences in 2015. Beijing: China Environmental Science Press, 2015: 1569-1573.
[40] MÜCHER A C,KLIJN A J,WASCHER M D,et al. A New European Landscape Classification (LANMAP): A Transparent,Flexible and User-Oriented Methodology to Disting Uish Landscapes[J]. Ecological Indicators,2010,10: 87-103. doi: 10.1016/j.ecolind.2009.03.018
[41] 贺鼎,卢丽娜,王晶,等.大尺度线性遗产区域景观特征识别: 以北京长城文化带为例[J].风景园林,2022,29(9):99-106. HE D,LU L N,WANG J,et al. Landscape Character Identification in Large-Scale Linear Heritage Areas: A Case Study of Beijing Great Wall Cultural Belt[J]. Landscape Architecture,2022,29 (9): 99-106.
[42] 林轶南.英国景观特征评估体系与我国风景名胜区评价体系的比较研究[J].风景园林,2012,19(1):104-108. doi: 10.14085/j.fjyl.2012.01.026 LIN Y N. Comparative Study on England and Scotland’s Landscape Character Assessment System and the Evaluation System for the National Parks of China[J]. Landscape Architecture,2012,19 (1): 104-108. doi: 10.14085/j.fjyl.2012.01.026
[43] 吴明隆. 问卷统计分析实务: SPSS操作与应用[M]. 重庆: 重庆大学出版社, 2010. WU M L. Questionnaire Statistical Analysis Practice: SPSS Operation and Application[M]. Chongqing: Chongqing University Press, 2010.
[44] WÜSTENHAGEN R,WOLSINK M,BÜRER M J. Social Acceptance of Renewable Energy Innovation: An Introduction to the Concept[J]. Energy Policy,2007,35 (5): 2683-2691. doi: 10.1016/j.enpol.2006.12.001
[45] APOSTOL D, PALMER F M, PASQUALETTi M, et al. The Renewable Energy Landscape: Preserving Scenic Values in our Sustainable Future[M]. New York: Routledge, 2017.
-
期刊类型引用(0)
其他类型引用(2)